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Abstract  
 
Digital Twin (DT) systems offer promising opportunities in healthcare by enabling continuous 

monitoring and personalized analysis of physiological data. Yet, for patients, the outputs of these 

systems often remain difficult to interpret due to technical complexity, lack of contextualization, 

and limited transparency. This lack of interpretability can undermine patient engagement, trust, 

and ultimately the effectiveness of DT systems in supporting self-management and communication 

with care providers. 

 

This thesis explores how Large Language Model (LLM)-based conversational interfaces can 

function as interpretation layers within DT architectures, translating structured physiological data 

into understandable, patient-facing insights. Focusing on heart rate as a representative signal, we 

investigate how Retrieval-Augmented Generation (RAG) techniques can enhance the clarity, 

contextual relevance, and trustworthiness of responses in patient-facing interactions. To do so, we 

developed a local prototype that combines rule-based heart rate categorization with a retrieval-

enabled LLM (LLaMA 3.2), operating on simulated datasets to preserve privacy. The system 

generates contextual, comprehensible answers without offering clinical advice, using hourly 

summaries of heart rate logs as input. 

 

A mixed-methods evaluation involving nine participants was conducted to assess both technical 

performance and user experience. Technical accuracy was measured using RAGAs metrics, 

including faithfulness, answer relevance, and context recall, while user experience was evaluated 

through semi-structured interviews and standardized usability questionnaires. Results indicate that 

the system produced relevant, understandable, and empathetic responses, helping participants 

identify trends in their simulated heart data. However, broader queries led to decreased response 

consistency, and the use of simulated rather than real patient data limited the generalizability of 

findings. 

 

The main contribution of this thesis lies in embedding RAG within a DT framework to enable 

interpretable patient communication of heart rate data. This approach addresses key challenges in 

hallucination reduction and contextualization, providing a foundation for future systems that aim 

to translate complex physiological signals, starting with heart rate, into accessible and trustworthy 

explanations for end users.  
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Chapter 1 
Introduction  
 

1.1 Introduction  
 

Digital twin technology has evolved since its initial conceptualization and has numerous 

applications across various industries, including construction, energy, transportation, smart cities, 

agriculture, education, and healthcare. The term digital twin (DT) is defined as a digital copy of a 

physical system, ideally designed to exchange data bi-directionally in real-time between the virtual 

and physical components [1, 5]. Originating in the 1990s as a conceptual framework to model real-

world systems, the DT paradigm gained traction with Michael Grieves' refinement in 2002 for 

Product Lifecycle Management [1, 2]. It was later formalized by NASA in 2010 for use in real-

time simulation and monitoring of aerospace systems [3]. 

A digital twin comprises three main components: the physical system, its virtual representation, 

and the connection between them that ensures a dynamic, real-time data flow. An essential 

characteristic of a DT that makes it relevant in the industry is its capacity to collect and process 

data, as well as its flexibility and accuracy, since this information helps simulate the status of the 

physical twin. This effective integration enables the prediction of its performance, preventing 

unexpected issues and increasing safety and reliability by optimizing its current and future 

behavior [1, 4, 7]. 

Gradually, the concept of DT was also adopted in the healthcare domain, where it may represent 

either hospital infrastructure or an individual patient [5, 6]. While infrastructure-based DT aids in 

resource allocation and hospital management, patient-specific DTs are more complex and hold the 

potential to revolutionize personalized medicine. In this context, and to avoid the unique 

challenges that simulating a human being introduces, the concept of the Digital Human Twin 

(DHT) has emerged. Aiming to create a virtual counterpart of physiological processes by 

aggregating real-time and historical health data to simulate a patient's future health state, DTs offer 

insights for disease prevention, diagnosis, or personalized treatment planning [7, 8]. Depending on 

the application, these insights may be intended for healthcare professionals, patients, or both. 

A Digital Twin in the healthcare domain can produce various outputs related to its objectives, such 

as prediction, simulation, monitoring, visualization, or the generation of synthetic patient data [5]. 

Despite these advancements, a persistent barrier remains. Patients often receive raw health data 

outputs with minimal contextual explanation [9, 53]. Without a clinical background, these outputs 

can be overwhelming. This leads to a struggle to interpret physiological data and derive meaningful 

personal insights, which can limit their ability to understand their health status or take appropriate 

action [9]. Tackling this challenge requires new interaction strategies to prioritize clarity, empathy, 

and usability in the communication of health data. A promising solution is the use of AI techniques 

through Conversational Agents, which may enhance patient communication with Digital Twin 

data, creating a more natural and user-friendly experience [10]. 
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Recent research highlights a promising direction for improving healthcare communication through 

the integration of conversational interfaces powered by LLMs [10, 11, 13]. These models, trained 

on enormous amounts of text, can generate natural-sounding responses and simulate human-like 

dialogue. When embedded within health systems, LLMs have the potential to help patients better 

understand complex physiological information by presenting it in a more natural, accessible, and 

context-aware manner [10,11]. 

Several recent studies demonstrate the practical potential of LLMs in health-related applications. 

PhysioLLM [9], for example, is an interactive system that combines wearable physiological data 

with contextual information to generate personalized health insights and support users in setting 

actionable wellness goals. In a user study, it outperformed generic LLM chatbots in helping 

participants interpret their data, particularly in improving sleep quality [9]. Similarly, OpenCHA 

is an open-source framework designed for the analysis of physiological time series. It integrates 

user interaction, data sources, and analytical tools to generate accurate health insights. In a 

benchmark study, it successfully estimated heart rate from PPG signals and outperformed baseline 

models when validated against ECG data [13]. While these systems focus on real-time monitoring 

and analytical precision, this thesis introduces a contrasting approach: a design-oriented prototype 

that simulates a conversational interpretation layer (a dialogue-based system that transforms 

structured physiological data into natural language responses tailored for end users) for heart rate 

data within a Digital Twin system, using offline, static datasets strictly for research purposes. This 

setup does not accurately reflect how the system would operate in real clinical contexts, where 

continuous, real-time physiological inputs are required.  

Despite the promise shown by such systems, integrating LLMs into sensitive domains, such as 

healthcare, also raises several critical design and ethical concerns. Key challenges include ensuring 

response accuracy, maintaining interpretability, protecting data privacy, minimizing bias, and 

preventing hallucination answers that sound credible but are incorrect [9, 12, 13]. These risks 

underscore the importance of careful system design, particularly in patient-facing applications 

where clarity, trust, and emotional sensitivity are essential. 

This thesis investigates how conversational interfaces powered by Large Language Models 

(LLMs) can support patients in interpreting heart rate data within a Digital Twin context. The aim 

is to design and evaluate a prototype that serves as a bridge between complex physiological data 

and patient-friendly communication, translating structured outputs into clear, empathetic dialogue, 

which was measured in terms of emotional tone and perceived appropriateness from the users’ 

perspective. The system employs an AI prompt-based strategy, refined through rule-based inputs 

and pre-evaluated using NLP metrics, to ensure clarity and prevent hallucinations. The project 

adopts a user-centered, design-oriented approach, combining internal testing with exploratory user 

evaluation to assess how such systems influence understanding, trust, and engagement, with 

particular attention to the clarity, usefulness, and emotional tone of the interaction in a healthcare 

setting. 
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1.2 Research questions  

To guide the investigation, the following research questions are addressed: 

• RQ1: How should LLM-based conversational interfaces be designed to improve patients’ 

understanding and interaction with heart rate data from Digital Twin systems? 

 

• RQ2: What are the risks and limitations of using LLM-based conversational interfaces in 

Digital Twin systems, and how do these affect patients’ trust and engagement with their 

health data? 

 

1.3 Report outline 

Chapter 2 provides the theoretical and conceptual foundation of the study. It reviews the literature 

on Digital Twin systems in healthcare, Large Language Models (LLMs), and conversational 

interfaces, while also addressing technical, ethical, and design-related considerations in patient-

facing health technologies. It introduces the core principles of Retrieval-Augmented Generation 

(RAG), its role and challenges in healthcare, and also reviews RAGAs as evaluation metrics to 

assess groundedness, relevance, and faithfulness in responses. Chapter 3 presents related work, 

focusing on previous implementations of LLM-based conversational assistants in healthcare and 

applications of Retrieval-Augmented Generation (RAG) for LLMs in healthcare.  Chapter 4 

describes the methodology, detailing the conceptual framework of the system, the experimental 

design, and the evaluation strategy adopted for both technical and user-centered perspectives. 

 

Chapter 5 introduces the prototype development, including the system architecture, datasets, data 

analysis, summary generation, and the implementation of the interpretation layer. It also presents 

the technical evaluation with NLP-based performance metrics. Chapter 6 outlines the user study, 

including participant characteristics, study phases, task scenarios, data handling, ethical 

considerations, and study procedures. It reports both qualitative and quantitative findings, 

integrating thematic analysis, questionnaire results, and open-ended responses to assess the clarity, 

usefulness, and emotional tone of the system. Quantitative user perceptions are assessed using 

custom questionnaires informed by Chatbot Usability Questionnaire (CUQ) [14] and the Bot 

Usability Scale (BUS) [15]. These instruments served as a foundation for constructing tailored 

questions aligned with the study's design goals.  

 

Chapter 7 discusses the results concerning the research questions. It first interprets the system’s 

iterative development across three prototype versions and then relates the findings to the research 

questions. The final Chapter 8 concludes the thesis with reflections. It summarizes the main 

contributions, acknowledges challenges and limitations, and outlines directions for future work on 

conversational health interfaces within Digital Twin systems.  
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Chapter 2 
Research Background  
 

2.1 Digital Twins in healthcare 
 

2.1.1 Introduction to Digital Twins  
 

The conceptual idea of Digital Twins (DTs) emerged around the 1990s, when David Gelernter 

introduced the concept of Mirror Worlds, virtual environments designed to reflect real-world 

systems using data from the physical world [1]. About a decade later, in 2002, Michael Grieves 

expanded on this by proposing the Mirrored Spaces Model within the context of Product Lifecycle 

Management (PLM), aiming to enhance how products are designed, tested, and managed 

throughout their lifecycle [2]. However, it was not until 2010 that the actual term “Digital Twin” 

was published and implemented for the first time by NASA's roadmap, where they used it to 

describe a powerful way to monitor and predict the status of an aircraft, like tracking wear and tear 

or forecasting failures [3]. Since then, DTs have expanded, transforming different industries, 

especially healthcare, where they aim to model and monitor individual patients in real time [5].  

 

A Digital Twin (DT) is the digital representation of a physical system, object, or process, 

maintaining bidirectional and continuous real-time communication [1,5]. Unlike a static digital 

replica, a Digital Twin is a dynamic representation that evolves by continuously gathering real-

time data from its physical counterpart. Its unique capability to bridge the gap between physical 

and digital domains is enhanced by technologies such as AI, data analytics, and sensor data. This 

integration allows the DT to simulate the system’s current state and predict future scenarios, 

including potential defects or unexpected issues,  enabling better decision-making in multiple 

fields of application. Building on this foundation, recent advancements and integration of 

technologies like Generative Artificial Intelligence, Cognitive Computing (CC), the Internet of 

Things (IoT), and sensors have paved the way for usage of DTs in diverse areas such as aerospace, 

energy, agriculture, education, construction, environmental and urban planning, and healthcare 

field [4, 6–8, 14]. 

 

2.1.2 Digital Twins in Healthcare  
 

Throughout the evolution of digital technology, the concept of Digital Twins (DTs) has expanded 

in scope and application. In healthcare, this broad definition can sometimes lead to confusion if 

not specified, as DTs may refer to the modeling of either an entire hospital system or infrastructure, 

or an individual patient’s system. This flexibility in application has enabled a wide range of 

opportunities across the healthcare sector. DTs are increasingly being explored in silico clinical 

trial design, medical device development, drug discovery, treatment optimization, care 

coordination, and surgical planning, demonstrating their potential to support both organizational 

and patient interventions [5, 6]. However, the broad range of use cases and definitions has led to 

ambiguity around what constitutes a Digital Twin, particularly in healthcare. To reduce this 

ambiguity, the term Digital Human Twin (DHT) has emerged as a more precise concept within the 
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field, emphasizing the ability to replicate living physical entities. While the term suggests a 

complete digital replica of a human, in practice, DHTs are limited by the complexity of 

representing the human body as an integrated biological system, as well as by current technological 

constraints. Rather than attempting to simulate an entire person, DHTs typically model specific 

organs, physiological functions, or disease-related processes, offering predictive insights and 

supporting clinical decision-making in a targeted way [5].  

 

2.1.3 Structure of Digital Twins  
 

To build a reliable and accurate Digital Human Twin (DHT), it is essential to integrate multiple 

technologies and access extensive, high-quality healthcare data. These data include genetic 

information, electronic health records, medical imaging, multi-omics data, real-time vital signs, 

and lifestyle behaviors collected from various sources such as hospitals, wearable devices, mobile 

health applications, and innovative environments [15-17]. 

 

Figure 1 illustrates a general Digital Twin system in the healthcare context, where the physical 

entity corresponds to a patient’s system, and the virtual entity integrates physiological and 

contextual data to enable personalized insights and interaction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DHTs are typically constructed using a modular architecture, where different physiological or 

biological components are represented as separate, interoperable units. This modularity supports 

scalability, system flexibility, and continuous updates without disrupting the overall structure 

[18,19]. To ensure that the diverse datasets can be effectively interpreted and used across modules, 

they must be standardized and harmonized. This is often accomplished by developing structured 

ontologies that align formats and terminologies across various data sources, ensuring consistency 

and interoperability throughout the system [7]. 

 

Once collected, the data are transmitted through local networks or mobile devices to cloud-based 

platforms where they are securely stored and processed. The data are then analyzed using advanced 

Figure 1. Structure of a Digital Twin system in healthcare, consisting of a physical entity, a 

virtual entity, and data flows enabling real-time communication. From K. Zhang et al. [6]. 
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AI techniques, such as deep learning [7]. These AI-powered systems enhance the DHT’s ability to 

simulate complex physiological states and enable predictive decision-making support, including 

early diagnosis, risk detection, and personalized treatment planning [20, 21]. Finally, security and 

privacy are critical components in the development of DHTs. Hence, ideally, multi-layered 

protection mechanisms are implemented to safeguard sensitive health data while maintaining 

system performance and regulatory compliance [19]. 

 

2.1.4 Applications of Digital Twins in Healthcare  
 

One of the key promises of Digital Health Technologies (DHTs), including Digital Twins, lies in 

their ability to enable precision medicine: a healthcare strategy focused on tailoring treatments and 

preventive measures to individual biological, genetic, and psychosocial characteristics. Among 

these technologies, Digital Twins (DTs) have emerged as a compelling and representative 

approach. While DTs are part of the broader category of DHTs, this report will refer to them simply 

as Digital Twins (DTs) for clarity and consistency. By moving away from standardized care, it 

aims to deliver more effective and timely interventions for each patient.  For instance, DHTs can 

generate personalized risk profiles for chronic conditions, provide lifestyle recommendations, 

warnings about acute health threats, and prompt timely diagnostics [6–8].  

 

In practice, Digital Twins are being explored for a variety of patient-centered applications, 

including early diagnostics, chronic disease prevention, personalized therapy planning, medical 

device development, care coordination, and surgical optimization [5, 6]. These DT-based diagnosis 

and treatment systems aim to bridge existing gaps in care through AI-driven models that support 

more precise and individualized interventions [8]. Already, some DTs are being deployed across 

clinical domains to support data-driven decision-making, particularly in patient care.  

 

▪ Cardiovascular Medicine: Modeling of the heart to enable non-invasive diagnosis and 

the identification of optimal treatment strategies. Cardiovascular Medicine: Modeling of 

the heart to allow non-invasive diagnosis and the identification of optimal treatment 

strategies. For example, DTs have been used to simulate heart mechanics and predict 

patient outcomes in cardiac resynchronization therapy [7, 8, 17, 21]. 

 

▪ Surgery: Patient-specific anatomical models support pre-operative planning and help 

surgical teams avoid accidental damage to critical structures. DTs in this application have 

been used to simulate aneurysms for implant sizing, predict post-operative complications 

such as portal hypertension, and assist in planning interventions to reduce surgical risks 

and improve recovery outcomes [7, 8, 21]. 

 

▪ Pharmacy: DTs simulate organ–drug interactions and accelerate drug development by 

predicting biochemical reactions and optimizing formulations. One application includes 

digital heart models used to assess drug safety and personalize dosing during 

pharmaceutical testing. Additionally, DTs have been applied to improve pharmaceutical 

manufacturing efficiency by integrating IoT and AI technologies for better scalability and 

automation. [7, 8, 17, 21]. 
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▪ Orthopaedics: Wearable sensors and simulation systems enable real-time monitoring 

biomechanical properties and motion of the human body. DTs have been applied in spine 

modeling to support posture simulations and rehabilitation planning using kinematic 

analysis and real-time biomechanical modeling [8, 21].  

 

▪ Oncology: Personalization of cancer treatment. By creating patient-specific models, DTs 

enable the simulation of disease progression and therapeutic responses, supporting more 

informed and individualized decision-making in oncology care. For instance, they have 

been used to simulate drug response variability in lymphoma or to support targeted cancer 

treatment planning. [7, 17]. 

 

▪ Chronic Disease Management: DTs integrated with IoT technologies enable continuous 

monitoring of vital signs to support individualized treatment strategies. By providing real-

time data and dynamic feedback loops, it is possible to adjust care plans, improving the 

health outcomes of patients with long-term conditions. Applications include glucose level 

tracking and adaptive insulin pump modeling in diabetes care, demonstrating personalized 

control of glycemic states. [7, 17].  

 

▪ Other applications: Technology extends beyond traditional clinical domains, offering 

flexible solutions across many areas of healthcare. These applications often aim to improve 

health outcomes, support personalized decisions, and enhance system efficiency. Whether 

helping with individual planning, understanding behaviors, or improving healthcare 

processes, Digital Twins are opening up new possibilities across the field. Some examples 

are improving vaccination logistics, supporting personalized nutrition and lifestyle 

planning, and enhancing dental care through 3D modeling for orthodontic treatment. [8, 

17, 21]. 

 

 

    2.1.5 Patients’ Digital Health Data Interpretation  
 

While Digital Twins show great promise in advancing personalized care, the data they generate is 

often complex for patients to interpret. Variability in biology, behavior, and environment adds 

complexity, and although AI and wearable technologies offer support, much of the information 

remains inaccessible without clinical context [6]. 

 

This complexity in physiological signals is exemplified by those derived from 

photoplethysmography (PPG) and electrocardiography (ECG). PPG estimates heart rate by 

detecting changes in blood volume, while ECG derives it from the electrical signals of cardiac 

cycles, typically by identifying R-wave peaks within the QRS complex [19, 48]. These 

complementary modalities provide high-resolution and clinically robust measures of heart rate, 

which are widely applied in the detection of cardiovascular abnormalities such as bradycardia and 

tachycardia [48]. Yet, despite their diagnostic value, the raw data they produce can be complex for 

non-clinical users to interpret without contextualization, thresholds, or personalized framing. 

 

Nowadays, patients have access to physiological data, such as heart rate, activity levels, and sleep 

patterns, through digital health platforms and wearable devices. While this data can raise 
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awareness and support healthier habits, unclear reference ranges and unfamiliar terminology often 

contribute to confusion, making it difficult for users to interpret the information in context or 

translate it into meaningful, personalized actions. Current interfaces typically offer limited 

interactivity, generic feedback, and minimal personalization, factors that hinder real-time 

understanding, combined with health literacy gaps and poor design [6, 9, 22, 23].  

 

These challenges highlight the growing need for more intuitive, patient-centered solutions, 

particularly systems that can translate complex health data into clear, natural conversational 

guidance. In this context, AI-powered tools are emerging as promising supports to help patients 

interpret and manage their health. Conversational systems, in particular, can now engage in open-

ended dialogue and provide relevant, contextual information more naturally and engagingly [13], 

offering an opportunity to overcome the limitations of current static interfaces and better align with 

users’ needs and expectations. 

 

2.2 Conversational Interfaces in Healthcare 
 

Many developed AI-driven tools have helped patients understand their health data more easily. 

Web-based platforms now offer user-friendly features like age-specific centile curves and z-scores 

to improve contextualization, particularly in pediatric care [22]. Wearables and digital systems 

enable automated monitoring and trigger alerts for abnormal results, while machine learning 

models support classifying health states. However, these tools often fall short in translating clinical 

findings into patient-friendly, actionable insights [24-26]. In overloaded healthcare systems, where 

professionals may not always be available to answer patients’ questions, the rise of telemedicine 

and remote care has accelerated the adoption of AI-driven tools to ensure consistent, high-quality 

communication across diverse care settings [27]. Among these emerging approaches, 

conversational interfaces, particularly those powered by AI, have shown unique potential to bridge 

this gap by providing tailored, real-time explanations through natural dialogue [9, 13, 28, 43-45]. 

 

Conversational interfaces, often called conversational agents (CAs) or chatbots, are increasingly 

integrated into healthcare as part of the broader adoption of AI technologies. By delivering timely, 

tailored responses based on individual patient input, they enhance the relevance and clarity of 

health communication. These designed systems simulate natural, human-like dialogue and support 

patients through various tasks, including accessing medical information, booking appointments, 

triaging symptoms, and even offering emotional support [13, 27]. Their potential lies not only in 

making healthcare services more personalized and accessible, but also in alleviating the 

administrative burden on providers by handling routine inquiries and offering real-time support 

[29, 36]. 

 

2.2.1 LLM-based Conversational Agents in Healthcare  
 

Conversational interfaces powered by large language models (LLMs) are increasingly integrated 

with Digital Twins in healthcare through their potential to address limitations of conventional 

tools, enhancing patient engagement, streamlining data interaction, and supporting personalized 

care [28]. These interfaces enable natural and intuitive communication between users and complex 

digital health systems, making health data more accessible and actionable.  
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Large Language Models (LLMs) such as GPT-4 [46] or LlaMA [32] are trained on massive 

volumes of unstructured text. They can comprehend, generate, and reason with natural language, 

unlocking new possibilities for patient-facing applications [10, 13]. These models have reshaped 

how patients, professionals, and data interact, making communication more proactive and 

personalized. This shift supports dynamic engagement that adjusts to the needs of both patients 

and providers; when linked to user-specific health data, LLMs can generate context-aware insights 

that enhance interpretability and foster greater user trust in the information provided [29]. Their 

ability to aggregate large bodies of textual knowledge and provide contextual, goal-oriented 

responses has positioned them as key tools for interactive health support [13]. 

 

Recent research illustrates how these capabilities are being extended into physiological data 

interpretation. Emerging systems now connect LLM-based dialogue with wearables and clinical 

monitoring devices to provide personalized insights. For example, PhysioLLM enables natural-

language interaction with wearable sensor data [9], the Personal Health Insights Agent (PHIA) 

delivers wellness feedback from sleep and activity data [43], LLM-CGM supports conversational 

queries on continuous glucose monitoring for diabetes care [44], and ALPHA integrates 

multimodal physiological signals for anomaly detection and patient guidance [45]. 

 

Ongoing efforts to improve the speed, efficiency, and safety of LLMs continue to support their 

broader adoption. However, the integration of these systems into clinical and personal health 

workflows must be carried out with careful attention to ethical, safety, and privacy considerations 

[10, 28]. 

 

2.2.2 Technical and Ethical Considerations in LLM -Based Health Systems  
 

While AI conversational systems promise more accessible and personalized care, they also 

introduce critical ethical and trust-related challenges that must be addressed to ensure these 

technologies truly help and empower those who use them. Patients need reassurance that their 

health data is protected, that the information they receive is accurate and unbiased, and that the 

system responds in a human-centered, empathetic way. 

 

Data Handling and Security 

 

Integrating LLMs into Digital Twin systems requires special attention to data privacy and secure 

processing. While many healthcare systems already follow strict privacy regulations, LLM-based 

interfaces introduce unique challenges due to their reliance on external APIs and cloud-based 

processing [30, 33]. These systems must be designed with enhanced safeguards, such as local data 

preprocessing, encryption, on-device handling where feasible, and transparent communication of 

how personal data is used or stored. Projects like PhysioLLM [9] emphasize privacy-preserving 

designs that prevent the inclusion of identifiable information in any communication with external 

services. Similarly, large-scale wellness systems such as PHIA [43] highlight the risks of scaling 

personal data interpretation across populations, underscoring the need for transparency in how user 

data is processed and shared. 

 

Reliability and Bias 
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Although LLMs show promise in knowledge summarization and natural language interaction, their 

application in clinical contexts is limited by concerns over data quality, accuracy, interpretability, 

bias, and hallucinated content [10, 31, 32]. These risks are evident in specialized domains, where 

models must remain closely aligned with clinical guidelines or curated datasets. For instance, 

LLM-CGM demonstrates the challenge of ensuring reliable interpretations in chronic disease 

management [44], while ALPHA illustrates how multimodal anomaly detection must balance 

technical precision with clinically safe recommendations [45]. These systems should therefore not 

be used to provide diagnoses or treatment without human oversight, but rather as support tools 

offering contextualized information grounded in verified sources [9]. 
 

User Experience and Trust  
 

Conversational interfaces make digital twin systems more user-friendly, empowering patients and 

clinicians to interact with health data naturally and intuitively, which can improve self-care and 

clinical decision-making [10, 33-35]. However, for patients to trust and engage meaningfully with 

these systems, the experience must feel not only helpful but also safe, respectful, and transparent. 

This includes clearly communicating the system’s capabilities and limitations, ensuring timely and 

fluid responses, and behaving reliably when uncertain [9]. In emotionally sensitive contexts such 

as elder care or mental health, thoughtful design is essential to prevent too much trust or 

misinterpretation. Ultimately, trust is fostered through functionality, clarity, and empathy of a real 

conversation [10]. 
 
 

2.3 Retrieval-Augmented Generation (RAG)  
 

2.3.1 Core Principles of RAG  
 

Retrieval-Augmented Generation (RAG) is a hybrid framework that integrates retrieval-based 

methods with generative models to enhance factual grounding and reliability in language 

model outputs. By incorporating external knowledge into the generative process, RAG 

significantly improves performance in knowledge-intensive tasks such as open-domain 

question answering and clinical data interpretation [17, 31, 36]. Unlike traditional large 

language models (LLMs), which are constrained by their pre-training data and cutoff dates, 

RAG dynamically retrieves relevant context at inference time, reducing hallucinations and 

producing more trustworthy responses. This ability to minimize hallucinations is especially 

crucial in health-related contexts, where inaccurate or invented responses could undermine 

patient trust or lead to serious misinterpretation of physiological data. 

 

The importance of RAG becomes clear when considering the main limitations of LLMs. First, 

models are prone to hallucination, often producing confident but inaccurate answers when no 

reliable evidence is available. Second, they are not well-calibrated: even when wrong, models 

can present their outputs with undue certainty, making errors difficult for users to detect. Third, 

LLMs cannot directly access proprietary or domain-specific datasets, such as medical records 

or internal clinical notes, solely through prompting. Finally, their static training makes them 

poorly suited to answering questions about recent or rapidly evolving information [37]. 
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The effectiveness of RAG lies in the complementary roles of its two components: the retriever 

and the generator. The retriever employs information retrieval (IR) techniques to search 

external databases and identify documents most likely to contain relevant evidence for a given 

query. These retrieved passages are then supplied to the generator, which integrates them into 

coherent, context-sensitive answers [36, 37]. This dual process addresses the weaknesses of 

simple prompting by grounding responses in curated datasets rather than relying solely on the 

LLM’s parametric knowledge. Figure 2 illustrates this dual structure, highlighting how the 

retriever locates contextually relevant documents, which the generator or reader then processes 

to produce an evidence-based answer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The RAG workflow is generally described through three stages: 

 

Indexing. Raw documents are transformed into a standardized text format, segmented into 

smaller “chunks” that fit within the model’s context window, and converted into dense 

vector embeddings that preserve semantic meaning. These embeddings are stored in a 

vector database, enabling efficient similarity search and ensuring that LLMs can access 

structured data in a form they can interpret  [17, 31]. 

 

Retrieval. When a user query is submitted, it is encoded into the same embedding space as 

the indexed chunks. The system calculates similarity scores (e.g., cosine similarity) 

between the query and stored vectors, and selects the top-K most relevant chunks. This 

mechanism ensures that the evidence provided to the model is directly aligned with the 

intent and context of the user’s request [17, 31]. 

 

Generation. The retrieved chunks are concatenated with the user’s query to form a context-

enriched prompt. The LLM then synthesizes a response that incorporates the retrieved 

evidence, balancing factual accuracy with natural language fluency. In this way, the 

generation step shifts the system from simple retrieval toward a conversational, user-facing 

explanation that remains grounded in curated content [17, 31]. 

 
 

Figure 2. RAG architecture combining retrieval of relevant documents with generation of grounded responses. From 
Daniel Jurafsky and James H. Martin. [17]. 
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2.3.2 Role of RAG in Healthcare  
 

Retrieval-Augmented Generation (RAG) is increasingly used in healthcare to enhance the 

accuracy, reliability, and transparency of large language model (LLM) outputs by integrating 

real-time, domain-specific information [17]. RAG improves clinical decision support, medical 

question answering, personalized patient care, healthcare education, and information 

extraction by grounding responses in up-to-date, evidence-based sources [21-27].  

 

- Clinical Decision Support. Provides evidence-based, real-time recommendations by 

integrating external guidelines and literature, enhancing diagnostic accuracy, and 

reducing misdiagnosis rates. Use cases include personalized treatment, emergency 

triage, disease management, and diagnostic support [21-23, 27]. 

 

- Medical Question Answering. Enhances LLMs with current, domain-specific 

knowledge, surpassing standard models in accuracy and reliability. Applications 

include complex guidance interpretation, specialty-specific queries, radiology, and 

diabetes-related care questions [21, 22, 24, 25, 27]. 

 

- Personalized Patient Care. Combines patient-specific data with current research to 

assist personalized treatment planning. Examples include providing the latest learning 

resources and providing patients with accessible and personalized health information 

[21-23, 26]. 

 

- Information Extraction. Automates the extraction of relevant data from EHRs and 

scientific literature, streamlining clinical workflows. Key use cases include clinical trial 

screening, EHR summarization, and pharmacovigilance [21, 23, 24]. 

 

 

2.3.3 Challenges of using RAG in Healthcare  
 

Although RAG offers a robust framework for improving the factual grounding of LLMs, it is not 

without limitations. At a general level, three categories of challenges have been identified: retrieval 

difficulties, where systems struggle with precision and may return irrelevant or incomplete chunks; 

generation errors, where models still risk hallucinations, irrelevance, or biased outputs; and 

augmentation hurdles, where integrating heterogeneous sources can result in incoherent or 

redundant responses [31]. These issues become even more pronounced in healthcare, where 

medical knowledge is complex, dynamic, and safety-critical. 

 

The main challenges of applying RAG in healthcare can be grouped into various areas, such as: 

 

• Retrieval and Knowledge Limitations. RAG depends heavily on the availability and 

quality of external sources. Outdated or incomplete datasets can result in knowledge 

deficiencies, particularly in rapidly evolving fields such as medicine. Retrieval systems 

may also struggle to identify the most relevant documents or collapse by repeatedly 

returning the same evidence, undermining contextual accuracy [21, 31].  
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• Hallucinations and Factual Errors. Even when relevant sources are retrieved, RAG 

models may still produce hallucinations, factual inaccuracies, or biased outputs. In 

healthcare, such errors carry heightened risks, as incorrect recommendations can lead 

directly to patient harm [18, 21, 31, 38].  

 

• Integration and Contextualization. Medical knowledge is heterogeneous, spanning 

narrative text, structured tables, flowcharts, and imaging results. Integrating these diverse 

formats into coherent and contextually accurate outputs remains a challenge. 

Augmentation can also result in redundancy or incoherence when multiple overlapping 

sources are combined [21, 31]. 

 

• Operational Challenges. In practice, RAG also faces operational hurdles, including high 

computational costs, the risk of repetitive or irrelevant retrievals, and the difficulty of 

embedding such systems into clinical workflows without adding to clinicians’ cognitive 

load [21, 22, 38]. 

 

• Ethical, Legal, and Privacy Constraints. Deploying RAG in healthcare must comply 

with strict privacy and safety regulations. Systems risk inadvertently exposing sensitive 

patient information if retrieval sources are not adequately secured. Ethical concerns also 

extend to fairness, as biases in medical datasets can disadvantage underrepresented 

populations. More broadly, the responsible adoption of RAG requires balancing innovation 

with accountability, transparency, and legal compliance [18, 21].  

 

In this thesis, we focus primarily on two of these challenges: hallucinations and contextualization. 

Specifically, we aim to reduce hallucinations in patient-facing responses and enhance the 

integration of structured physiological data, such as heart rate, into coherent and trustworthy 

conversational outputs. 

 

2.3.4 Retrieval-Augmented Generation Assessment (RAGAs)  
 

Evaluating Retrieval-Augmented Generation (RAG) systems requires methods that go beyond 

traditional natural language processing (NLP) metrics. Standard measures such as BLEU and 

ROUGE [31] primarily capture surface-level word overlap. In contrast, more advanced metrics 

such as BERTScore [39] leverage semantic similarity but still fail to account for the interplay 

between retrieval and generation fully. To address this, the Retrieval-Augmented Generation 

Assessment (RAGAs) framework was introduced as a task-specific evaluation method designed 

to assess the quality of RAG pipelines in both aspects, retrieval quality and generated accuracy 

[17, 31, 35].  

 

Unlike classical metrics, RAGAs does not rely solely on reference answers; it uses proxies for 

correctness and utility of retrieved passages, making it effective where gold-standard answers are 

scarce [35]. RAGAs can compute these dimensions automatically by prompting an LLM to verify 

claims, extract sentences, and compare embeddings between answers and queries [35]. In practice, 

these metrics can be combined into composite scores, balancing retrieval precision and generative 

fidelity [40]. The framework is typically structured around four core dimensions: 
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• Faithfulness: measures whether the generated answer remains grounded in the retrieved 

context. An answer is considered faithful if its claims can be directly inferred from the 

supporting evidence. This metric penalizes hallucinations and unverifiable statements. The 

LLM decomposes the answer into factual statements and verifies whether each is supported 

by the retrieved context [17, 31, 35, 40]. The score is computed as: 

𝐹 =  
|𝑉|

|𝑆|
 

 

Where |𝑉| is the number of statements in the generated answer supported by the retrieved 

context, and |𝑆| is the total number of statements extracted from the generated answer.  

 

• Answer Relevance: evaluates how well the generated response addresses the user’s 

question. It does not measure factual accuracy, but instead penalizes incomplete or 

redundant answers that deviate from the original query. To estimate this, the LLM 

generates potential follow-up questions from the system’s answer and compares them to 

the original query using embedding similarity [17], [31], [35], [40]. This score is computed 

as: 

 

𝐴𝑅 =  
1

𝑛
 ∑ 𝑠𝑖𝑚(𝑞, 𝑞𝑖)

𝑛

𝑖=1

 

 

Where 𝑞 is the user query, 𝑞𝑖 are follow-up questions from the answer, and 𝑠𝑖𝑚(𝑞, 𝑞𝑖) is 

the cosine similarity of their embeddings. The score measures how closely the answer 

aligns with the user’s intent. 

 

 

• Context Relevance: assesses whether the retrieved log chunks are appropriate and 

sufficient for answering the user’s question. This metric penalizes the inclusion of 

irrelevant or redundant information that could dilute the answer. The LLM extracts the 

subset of sentences necessary to answer the question and compares them to the full 

retrieved context [17, 31, 35, 40]. This metric is computed as: 

 

𝐶𝑅 =  
|𝑆𝑒𝑥𝑡|

|𝐶|
 

 

Where |𝑆𝑒𝑥𝑡| is the number of sentences in the retrieved context identified as relevant, and 

|𝐶| is the total number of sentences retrieved.  
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Chapter 3 
Related Work  
 
 
3.1 LLM-Based Conversational Interfaces in Healthcare  
 
Conversational interfaces powered by large language models (LLMs) have gained attention as 

tools to help patients interpret and engage with health data. Research focuses on grounding 

dialogue in external evidence to ensure reliability. Wang et al. [42] introduced RAGate, an 

adaptive gating mechanism that decides when retrieval is needed during conversation. The system 

models conversational context and relevant inputs to predict whether external knowledge (via 

retrieval) will improve response quality. RAGate is trained using human-labeled data on when 

augmentation was beneficial, and it explores both large language models and attention-based 

neural gate models to learn this decision boundary. This work reflects a broader trend toward 

integrating dialogue agents with retrieval systems to enhance reliability and trustworthiness. 

 

A second area of research has examined how LLMs can be used for interpreting physiological 

signals. Feli et al. [13] developed an LLM-powered agent to estimate heart rate from 

photoplethysmography (PPG) signals, implemented on the OpenCHA framework. By combining 

user interaction, analytical models, and data sources, their system increased signal-level accuracy 

compared to benchmark models. While this contribution primarily focuses on algorithmic 

accuracy, it demonstrates that applying LLMs to biosignal processing is feasible. 

 

Building on this, Fang et al. [9] proposed PhysioLLM, an interactive system linking wearable 

sensor data with dialogue to provide personalized health insights. Unlike backend analytics, 

PhysioLLM lets users query their data in natural language, supporting reflection on lifestyle and 

health behaviors. Similarly, Merrill et al. [43] introduced the Personal Health Insights Agent 

(PHIA), leveraging LLMs to analyze wearable data like sleep and fitness metrics and generate 

behavioral insights. PHIA performed well on over 4,000 health queries, highlighting LLMs' 

potential to scale personalized wellness support. 

 

Extending this trajectory into chronic disease management, Healey and Kohane [44] developed 

LLM-CGM, a benchmark for conversational querying of continuous glucose monitoring (CGM) 

data in diabetes care. Their work demonstrated how LLMs can assist patients in interpreting 

numerical glucose trends and retrospective plots by framing them in natural language, thereby 

reducing barriers to self-management for individuals with diabetes. Tang et al. [45] further 

advanced this research with ALPHA, an LLM-based system for detecting abnormal physiological 

health. By combining multimodal signals such as heart rate, oxygen saturation, and 

photoplethysmography, ALPHA offered accurate anomaly detection and health insights for users, 

highlighting the role of LLMs in bridging physiological data with personalized feedback. 

 

These studies show a continuum in LLM-based health tools: from retrieval mechanisms for 

dialogue [42], to biosignal analysis [13], to patient systems emphasizing interpretability with 
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wearables [9, 43], and to chronic disease management and anomaly detection [44, 45]. Our work 

combines these by embedding heart rate data into a conversational framework, focusing on patient 

interpretability within a Digital Twin system. 

 

3.2 Retrieval-Augmented Generation (RAG) for LLMs in Healthcare  
 
Retrieval-Augmented Generation (RAG) has emerged as a promising approach to addressing some 

significant limitations of large language models (LLMs) in healthcare, including outdated training 

data, hallucinations, and a lack of transparency in outputs. Amugongo et al. [17] provide a recent 

systematic review indicating that while RAG grounds responses in external evidence, there 

remains limited agreement on which datasets, methodologies, and evaluation frameworks are most 

effective in clinical applications. The review highlights a shortage of standardized benchmarks and 

ethical safeguards, emphasizing the need for more responsible methods of adoption. 

 

Domain-specific innovations have shown promise in narrowing these gaps. For instance, Zhao et 

al. [23] integrate MedRAG knowledge graph–elicited reasoning into retrieval pipelines to enhance 

diagnostic accuracy and inform treatment decisions in diseases characterized by overlapping 

symptoms. Miao et al. [26] adapted a RAG-enabled ChatGPT system for nephrology by aligning 

outputs with KDIGO 2023 guidelines for chronic kidney disease. Their work illustrates RAG’s 

potential in specialty domains, enabling outputs that remain guideline-driven and clinically 

grounded, beyond general Electronic Health Record (EHR) tasks toward more targeted, precision-

oriented applications. 

 

Empirical studies further underscore RAG’s utility in complex medical reasoning. Thompson et 

al. [41] introduced a zero-shot phenotyping method for EHRs, in which disease-relevant text 

snippets were retrieved and supplied to the LLM. This approach significantly outperformed 

physician-defined rules in diagnosing pulmonary hypertension, demonstrating RAG’s capacity to 

support the identification of rare disease cohorts and clinical research pipelines. Separately, Wang 

et al. [42] developed RAGate, an adaptive mechanism that selectively determines when retrieval 

is needed during conversation. Although initially aimed at general dialogue, its dynamic alignment 

of context and retrieval has clear implications for healthcare’s demand for interpretable and 

trustworthy systems. 

 

Beyond domain-specific case studies, systematic evaluations have begun to map RAG’s internal 

architecture and design decisions. Kay et al. [22] categorize biomedical RAG approaches into pre-

retrieval, retrieval, and post-retrieval stages, emphasizing how preprocessing strategies, such as 

summarization and chunking, can directly influence retrieval relevance and system performance. 

This directly supports our study’s emphasis on pre-retrieval summarization as a critical step to 

enhance interpretability in heart rate data applications.  

 

Similarly, evaluation methods are evolving. Gargari and Habibi [21] compared human and 

automatic metrics for medical RAG systems and found RAG models often outperform baseline 

LLMs while maintaining clinical reasoning performance. Additionally, Bora and Cuayahuitl [25] 

analyzed RAG-based medical chatbots, comparing hybrid and fine-tuned models in terms of 

accuracy, factual grounding, and confidence. Their results suggest RAG can improve reliability 

but highlight the need for testing in realistic clinical scenarios. 
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Together, these contributions reinforce the importance of RAG as a foundational strategy for 

improving LLMs in healthcare. Reviews [17], knowledge designs [23], domain adaptations [26], 

applications [41], mechanisms [42], and evaluation frameworks [21, 25] show RAG’s potential to 

connect clinical data with interpretable, evidence-based results. Progress relies on robust 

benchmarks, ethical safeguards, and domain-specific changes. Our study contributes to the 

integration of RAG into patient interfaces that interpret heart rate data within Digital Twin systems, 

emphasizing clarity, trust, and context. 

 

3.3 Identified Gap and Research Focus  
 

Taken together, these strands of research highlight two converging directions: conversational 

interfaces that enable patients to interact with and interpret physiological data, and retrieval-

augmented generation pipelines that strengthen reliability, grounding, and domain adaptation in 

healthcare. However, limited work has explored how these two directions can be meaningfully 

combined to support patient-facing interpretation of physiological signals, particularly heart rate, 

within Digital Twin systems. 

 

Our work extends this intersection by embedding RAG into a Digital Twin framework, enabling 

patient-facing interpretability of heart rate data through conversational exchanges. This 

contribution bridges methodological advances in retrieval with user-centered design, addressing 

both the technical and experiential challenges of making physiological signals accessible and 

meaningful to patients. 
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Chapter 4 
Methodology  
 
This research was developed as part of a collaboration with imec One Planet, a digital health 

research institute focused on preventive, personalized technologies for sustainable healthcare 

solutions [52]. It investigates, designs, and develops an iterative prototype that bridges the gap 

between structured physiological data and patient understanding through context-aware dialogue. 

To align with ethical standards in healthcare, the system is explicitly designed to avoid offering 

diagnostic or treatment advice. 

 

4.1 Research Design  
 

Given the interpretive focus of the research questions, this study adopts a mixed-methods research 

design that integrates both quantitative and qualitative perspectives. On the technical side, 

quantitative metrics are used to evaluate the accuracy and reliability of the LLM-based system 

proposed. On the human side, qualitative evaluation is conducted through user studies that 

investigate perceptions of trust, tone, clarity, and usefulness. Together, this dual focus ensures that 

the methodology captures both computational performance and user experience, reflecting the 

central goal of improving the interpretability of health data. 

 

Although not yet recognized as a standard method in digital health, this dual-focus methodology 

is guided by principles from Human-Computer Interaction (HCI) and Health Informatics (HI) [24, 

25]. HCI provides methods for embedding usability and user feedback throughout system 

development, while HI contributes to the structuring, interpretation, and communication of health 

data responsibly. Drawing on Natural Language Processing (NLP) and responsible AI design, the 

methodology ensures that both algorithmic logic and human needs inform the development and 

evaluation of the prototype. 

 
4.2 Research Process  
 
The research process is structured around four stages: Research, Prototype Development, User 

Study, and Evaluation. 

 

Stage 1: Literature Review and Prototype Design Choices 

 

This stage established the foundation for the system by investigating prior work on Digital Twins, 

conversational interfaces, and responsible AI in healthcare. Through a focused literature review 

and design exploration, communication gaps were identified in how patients interpret health data, 

particularly the lack of supportive, trustworthy, and comprehensible feedback mechanisms. This 

analysis highlighted the potential of Digital Twins for personalized monitoring, but also the 

difficulty patients face in engaging with raw physiological data. 
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Further review of conversational interfaces and LLM-based systems in healthcare revealed both 

opportunities and risks: while such models can generate accessible explanations, they also raise 

concerns of reliability, bias, and trust. Retrieval-Augmented Generation (RAG) was identified as 

a promising strategy to ground model outputs in structured data and mitigate hallucinations. At the 

same time, recent advances in evaluation frameworks emphasized the importance of combining 

computational metrics with user-centered assessments. 

 

Together, these insights not only defined the initial system requirements around interpretability, 

empathy, and the avoidance of diagnostic advice but also guided the technical choices and overall 

design approach for the prototype. As such, this stage functioned both as a literature review and as 

the basis for shaping concrete design decisions in the system’s development. 

 

Stage 2: Data Simulation and Prototype Development 

 

To prepare for system development, the study first simulated heart rate datasets designed to 

resemble real physiological signals. These datasets were generated following the structure of the 

PPG-DaLiA study [19], incorporating realistic activity segments, including resting, walking, and 

exercising. An 8-second window with a 2-second shift was used to calculate mean instantaneous 

heart rate values, a common practice in PPG-based heart rate estimation. This approach enabled 

controlled experimentation while avoiding privacy risks associated with real patient data. Heart 

rate was selected as the focal parameter due to its broad interpretability and relevance across 

medical and everyday wellness contexts. However, the use of simulated inputs necessarily 

excluded natural signal variability, which is acknowledged as a limitation of this study. 

 

To support semantic parsing and natural language generation, the raw time-series data were 

transformed into structured hourly summaries. These summaries extracted key features, such as 

heart rate metrics and behavioral context, and organized them into predefined fields. This structure 

is better aligned with human time perception and allows the system to efficiently interpret and map 

physiological trends into meaningful, context-aware prompts. By reducing data complexity and 

ambiguity, the structured summaries served as a critical intermediary, enabling the conversational 

agent to generate coherent, grounded, and patient-tailored responses. 

 

Building on this foundation, the prototype was designed as a web-based interface integrating three 

core components: (1) the structured dataset of heart rate summaries, (2) a rule-based classification 

layer to distinguish normal and abnormal values in relation to demographic context, and (3) a 

conversational module powered by a Large Language Model (LLM) supported by Retrieval-

Augmented Generation (RAG). The preprocessing step can be understood as the foundation of the 

retrieval pipeline, situated within the pre-retrieval phase of RAG pipelines, as described in recent 

systematic reviews of biomedical applications [22], where such strategies play a critical role in 

improving retrieval relevance and efficiency. 

 

This architecture was deliberately chosen to balance technical reliability with communicative 

clarity: the structured dataset ensured consistent input, the rule-based layer provided transparent 

and clinically informed thresholds, and the RAG-enhanced dialogue system anchored generative 

responses in factual data while reducing hallucinations. 
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For the conversational module, the study employed LLaMA 3.2 [32], an open-weight LLM variant 

developed by Meta. This model was selected for its strong instruction-following capabilities, 

lightweight deployment requirements, and ability to run locally without reliance on external APIs. 

These characteristics aligned with methodological priorities of reproducibility, transparency, and 

data privacy, while also enabling iterative experimentation in prompt design and system 

refinement. To guide the assistant’s tone and behavior, the temperature parameter of the LLM was 

set to 0.7. This value was selected to strike a balance between response diversity and coherence, 

enabling the assistant to produce conversational and empathetic outputs while still grounding its 

responses in factual, retrieved context. 

 

This methodological choice reflects the dual objective of the study: to ground system responses in 

traceable physiological trends while presenting them in a way that patients could understand and 

trust. By integrating safeguards at both the data and system levels, the prototype ensured that 

interpretive feedback remained accurate, accessible, and within clearly defined non-diagnostic 

boundaries. 

 

Stage 3: Iterative Refinement 

 

To refine the system systematically, development followed an iterative approach across three 

versions of the prototype, further explained in Section 5.5.1: Version 1 (V1), Version 2 (V2), and 

Version 3 (V3). Each iteration incorporated targeted design modifications based on identified 

limitations, evolving the assistant’s capacity for interpretive support while maintaining its non-

diagnostic role. 

 

• Iteration 1 focused on establishing a proof of concept by implementing the whole end-to-

end system architecture. This included the core pipeline of structured data preprocessing, 

rule-based classification, and LLM-driven dialogue generation. At this stage, the system 

supported specific time-based and general health queries. This initial version served as a 

baseline for assessing the feasibility of RAG-enhanced interpretation and set the foundation 

for subsequent refinements. 

 

• Iteration 2 extended the retrieval mechanism to support a broader range of query types by 

identifying and selecting relevant time-adjacent chunks based on semantic alignment, 

rather than relying solely on strict time matching. This involved retrieving the closest 

matching chunk as well as contextually relevant surrounding summaries. A fallback 

strategy was also introduced to ensure the assistant could still generate responses in cases 

where exact time matches were unavailable. The primary objective of this stage was to 

enhance the contextualization of heart rate data across broader timeframes, enabling the 

system to handle more flexible user queries. 

 

• Iteration 3 expanded the retrieval logic further by enabling the assistant to retrieve all 

available hourly summaries for a given user when handling generalized or summary-type 

queries. This allowed the assistant to synthesize a broader context across multiple time 

windows. Additionally, demographic-aware logic was incorporated into the classification 

layer and prompt generation process. The retrieved context was now tailored based on user-

specific thresholds and comparison norms (e.g., age-appropriate heart rate ranges), 
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improving the precision and personalization of the retrieved information without altering 

the fundamental retrieval infrastructure. Iteration 3 also emphasized testing the trade-off 

between interpretive richness and precision, aiming to approximate real-world use cases 

more closely. 

 

By structuring development in these iterations, the methodology allowed for controlled exploration 

of design choices and their impact on system performance. This staged approach ensured that 

refinements were traceable and systematically informed by observed limitations rather than 

arbitrary adjustments. 

 

Stage 4: User Study and Data Collection 

 

The fourth stage involved evaluating the prototype with nine participants in a simulated usage 

environment. Rather than being isolated at the end, this stage was conducted in parallel with the 

iterative development process, allowing user feedback to shape system refinements across versions 

actively. The study examined how participants interpreted the system’s responses, focusing on 

clarity, emotional tone, usefulness, and trustworthiness. To simulate realistic use, participants 

engaged in both structured tasks and open-ended interactions, where they could freely explore the 

assistant’s capabilities.  

 

The evaluation followed a two-phase approach. The exploration phase involved a small set of 

participants who interacted with early iterations of the prototype. This phase served to test 

feasibility, identify immediate usability issues, and generate formative feedback that informed 

refinements. The main evaluation phase involved a larger group of participants. It focused on 

systematically assessing the refined prototype, allowing for a more robust understanding of user 

perceptions regarding trust, interpretive support, and conversational flow. 

 

Participants were recruited voluntarily from imec full-time employees, who provided valuable 

exploratory insights into how communication design choices shaped perception and trust. Data 

collection involved: 

 

- Quantitative measures: standardized questionnaires to capture perceptions of clarity, 

naturalness, safety, and usefulness. 

 

- Qualitative measures: open-ended feedback and semi-structured interviews to explore 

expectations, trust, and interpretive support in greater depth. 

 

All data was anonymized, and no personal health information was used. Ethical safeguards were 

applied by ensuring that the prototype explicitly avoided diagnosis or prescriptive advice, framing 

itself solely as an interpretive assistant. 

 

This stage provided critical insight into how the system supported or hindered user understanding 

of heart rate data. 
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Stage 5: Evaluation  

 

Evaluation combined technical and user-centered perspectives. 

 

- Technical evaluation: Metrics from the RAGAs framework were applied, focusing on 

context relevance, answer relevance, and faithfulness. These scores quantified how well 

the assistant’s responses aligned with retrieved logs and user intent. Comparisons with a 

baseline LLaMA 3.2 model without retrieval provided further insight into the contribution 

of the RAG pipeline. 

 

- User evaluation: Interviews and questionnaire results were analyzed by thematic analysis 

of user comments. This dual approach revealed not only numerical usability ratings but 

also perceptions of tone, interpretive value, and conversational flow. 

 

Together, these methods provided a multi-layered understanding of system performance, linking 

quantitative indicators with subjective user experience.  
 

Stage 6: Results and Interpretation 

 

This stage focused on systematically analyzing the data collected through both technical metrics 

and user evaluations. Quantitative results from computational assessments (e.g., context relevance, 

faithfulness, and answer relevance) were combined with qualitative feedback from questionnaires 

and interviews. Our analysis process focused on triangulation, combining technical indicators with 

user perceptions to spot patterns and trade-offs. This approach made sure our findings were not 

interpreted in isolation but rather considered within both the computational performance and the 

human-centered experience. 

 

Stage 7: Conclusion and Future Work 

 

The final stage synthesized insights from all preceding phases into a coherent conclusion. 

Methodological outcomes were consolidated to address the research questions directly, while also 

acknowledging the study's limitations. Building on identified limitations, this stage outlined clear 

directions for future research, such as validation with real-world data, testing with larger and more 

diverse participant groups, and exploring advanced conversational strategies or model 

configurations. By closing with both reflection and projection, this stage ensured the research 

contributes not only immediate insights but also a roadmap for further exploration. 

 

Figure 3 provides an overview of the methodological stages, illustrating the progression from 

research and prototype development to iterative refinement, user study, evaluation, and 

interpretation. 
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Figure 3. Overview of the research methodology, showing the progression from literature 
review and prototype development to iterative refinement, user study (exploratory and 
main phases), technical evaluation, data analysis, and synthesis of results. 
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Chapter 5 
Prototype Development  
 

5.1 System Architecture Overview  

 

This chapter presents the technical development of the prototype system, structured to simulate a 

conversational assistant for interpreting heart rate data from a Digital Twin (DT) healthcare 

context. The design aims to support non-clinical users in understanding physiological heart rate 

data through a user-centered, explainable, and modular architecture while avoiding overwhelming 

or hallucinated answers through the human-computer interaction. Each component contributes to 

a layered pipeline that transforms offline raw heart rate measurements into natural language 

insights tailored to individual contexts, maintaining trustworthiness and ethical responsibility. 

 

Figure 4 represents the system architecture, which follows a five-stage modular pipeline serving 

as a visual reference for the detailed breakdown of each component described in the following 

sections. Each stage in the structure builds on the outputs of the previous one, starting with the 

ingestion of preprocessed structured heart rate datasets designed to simulate a range of real-time 

physiological conditions, including resting baselines, light activity (e.g., walking), post-meal 

states, and stress-induced elevations caused by cognitive or physical exertion. These datasets were 

generated using a clinical-rule logic to mimic abnormal heart rate patterns based on demographics 

and activity. Abnormal episodes lasted at least 10 minutes during periods of inactivity, surpassing 

established thresholds. The simulated data are then embedded into structured summaries, which 

then serve as input to a Retrieved-Augmented Generation (RAG) pipeline. This retrieval system 

identifies and extracts the most relevant information from the structured context to support the 

prompt given to a Large Language Model (LLM) interpretation layer, which then provides a 

context-reliable answer to the user's query. The LLM then generates an empathetic, natural 

language response that incorporates both the user’s heart rate state, derived from the retrieved 

structured summary, and the interpretive rules specified in the prompting strategy. Finally, the 

output is delivered via a user-friendly Conversational Interface that simulates an interaction with 

a digital health assistant. The architecture supports two primary interaction modes: system-

initiated alerts triggered by abnormal heart rate patterns and user-initiated queries regarding heart 

rate trends or conditions. 

 

To assess the quality of the system, we employed Retrieval-Augmented Generation Assessment 

(RAGAs) [17], a framework for evaluating RAG-based systems. This NLP evaluation technique 

provides metrics to assess both the retrieval component through context relevance, which evaluates 

the RAG pipeline, and the generative component, by measuring the faithfulness and answer 

relevance of the LLM responses [34, 35]. Each of these four aspects is scored on a scale from 0 to 

1, ensuring that the assistant’s outputs remain grounded, informative, and contextually appropriate. 
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5.2 Heart Rate Datasets 

Two types of heart rate data sources were used to support the simulation of structured health 

insights: a public dataset and a simulated one, each contributing complementary value. The public 

dataset ensured ecological validity through real-world physiological signals, while the simulated 

data enabled experimental control through customizable scenarios aligned with the system’s 

interpretive goals. 

 

5.2.1. Public Dataset 
 

The initial system development and testing used the PPG-DaLiA dataset from the UCI Repository 

[19] (see Section 5.5 for evaluation details). This dataset includes synchronized recordings from 

photoplethysmography (PPG) and electrocardiography (ECG), two complementary methods for 

measuring heart rate. PPG estimates heart rate through changes in blood volume, while ECG 

derives heart rate from the electrical signals of cardiac cycles, typically by identifying R-wave 

peaks within the QRS complex, which correspond to individual heartbeats. The recordings were 

segmented into 8-second overlapping windows with a 2-second shift. In each window, heart rate 

was estimated by detecting signal peaks corresponding to heartbeats, resulting in beats per minute 

Figure 4. System architecture and interaction design of the LLM-Based Conversational Interface. The architecture 
proceeds through five main stages: (1) ingestion of pre-processed simulated heart rate datasets, (2) data analysis and 
generation of structured summaries, (3) retrieval of relevant context via the RAG pipeline, (4) generation of context-reliable 
responses in the LLM-based interpretation layer, and (5) delivery of outputs through a Streamlit-based conversational 
interface. The interface supports two modes of interaction: system-initiated alerts triggered by abnormal heart rate 
patterns, and user-initiated queries regarding heart rate states. 
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(BPM) values. This approach produces a new heart rate measurement every 2 seconds, offering a 

high-resolution view of physiological changes over time. 

 

Data were collected from 15 healthy participants (seven male, eight female), aged 22 to 39 years, 

during a 2.5-hour recording session in real-world, free-living conditions. These participants 

performed a series of predefined activities, including sitting, standing, walking, running, cycling, 

climbing stairs, and transitioning between these states. Each segment of physiological data was 

labeled with corresponding activity annotations, providing a structured overview of the 

participant's physical state. These labels helped distinguish between low-energy-demand activities 

(e.g., sitting, standing still, baseline, or “no_activity” periods) and high-energy-demanding 

activities (e.g., walking, cycling, or running). 

 

To provide clarity on the structure of the PPG-DaLiA dataset, Table 1 presents a summary of its 

key signals and annotations. This summary outlines the main physiological recordings and their 

corresponding features, which form the basis for subsequent preprocessing and analysis in this 

study. 

 
Table 1. Summary of the PPG-DaLiA dataset [19], listing the key physiological signals and annotations used in this study.  

Dataset Component Description Unit / Format 

Timestamp Time index of the recording Seconds (s) 

PPG 
Photoplethysmography signal 

measuring blood volume changes 

Arbitrary units (raw 

signal) 

ECG 

Electrocardiography signal of 

cardiac electrical activity; HR 

derived from R-wave peaks in the 

QRS complex 

Milivolts (mV) 

Activity_label 

Annotated activity class (e.g., 

eating, walking, cycling, working, 

sleeping) 

Categorical label 

Hr_bpm 

Heart rate computed from 

PPG/ECG peak detection, 

expressed as beats per minute 

Beats per minute (BPM) 

Window_id 
Segmented 8-second window with 

2-second shift for analysis 
Index 

 

This classification provided a solid foundation for developing and testing the system’s heart rate 

interpretation logic, due to its synchronized data and structured activity labels. The activity labels 

were crucial for identifying abnormalities: elevated or decreased heart rate values were only 

considered significant during low-energy-demand conditions. This approach aligns with clinical 

reasoning, where physiological anomalies at rest are more concerning than those during exertion. 

While this method relies on activity labels from the dataset, it is worth noting that such precise 

activity recognition may not be readily achievable in real-world settings.  
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Figure 5 illustrates the structured mapping between heart rate values and activity labels in the PPG-

DaLiA dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

5.2.2 Simulated Dataset 

Building on the structure and logic of the PPG-DaLiA dataset, two customized heart rate 

simulation scenarios were developed using Python to facilitate controlled testing of the system’s 

classification logic. This classification logic was based on predefined clinical thresholds that 

categorize heart rate values into medically relevant states, such as normal resting values or an 

abnormal, elevated heart rate classified as tachycardia. Abnormal episodes lasted at least 10 

minutes during periods of inactivity, surpassing established thresholds. These thresholds consider 

demographic parameters, such as age and gender, in conjunction with widely accepted clinical 

benchmarks [16]. For example, the system assumes that a woman aged 65 or older with below-

average cardiovascular fitness may have a healthy resting heart rate between 77 and 84 beats per 

minute (bpm). While a man in the same age group may have a range of 74 to 79 beats per minute 

[20].  

The dataset included two virtual users with distinct but elderly demographic profiles, reflecting 

the target group of this study. Older adults are especially important in this context because 

abnormal heart rate episodes are more common and clinically significant in this group, and they 

also tend to have less technological experience, making clear and interpretable system feedback 

especially vital. The first, Alessa, is a 67-year-old female identified as the healthy user, with a 

baseline resting heart rate of 84 beats per minute (bpm). The second, Bryan, is a 70-year-old male 

modeled to simulate a realistic alert-triggering scenario. Although his baseline heart rate is 79 bpm, 

Bryan experiences abnormal elevations during low-energy activities. This abnormal profile 

enabled the system to test its detection, interpretation, and explanation pipeline under conditions 

similar to those of early warning signs in real-world health monitoring. 

Figure 5. Data collection protocol from the PPG-DaLiA dataset [19], illustrating activity labels 

and corresponding ECG-based heart rate signals. White segments indicate transient periods 

between activities. 
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To simulate a realistic yet controlled daily routine, both users were assigned an 8-hour schedule 

composed of six activity segments: sleep (60 minutes), work (180 minutes), walk (30 minutes), 

exercise (60 minutes), meal (30 minutes), and leisure (90 minutes). For each segment, heart rate 

values were generated by applying randomized, activity-specific multipliers to each user’s baseline 

rate, along with low-amplitude noise to reflect physiological variability. This process can be 

formalized as: 

𝐻𝑅𝑡 = 𝐻𝑅𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒  × 𝑀𝑠 + 𝜖 

Where: 

• 𝐻𝑅𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒: baseline heart rate for the virtual user (e.g., 79 bpm for Bryan) 

• 𝑀𝑠: multiplier linked to the activity segment (e.g., 0.95-1.05 for sleep, 1.3-1.6 for exercise) 

• 𝜖, random noise from a Gaussian distribution representing physiological variability 

• 𝑡, each time step (every 2 seconds in the simulation)  

 

Low-energy segments such as sleep, meal, work, and leisure served as baseline contexts for 

detecting abnormal heart rate patterns.  

Following the same temporal segmentation logic as the public dataset, the signals were processed 

using an 8-second sliding window with a 2-second shift, producing a new heart rate estimate every 

2 seconds. This yielded 14,400 data points per user across the simulated 8-hour period (from 08:00 

to 16:00), each paired with a timestamp and activity label. The resulting data were exported as 

synchronized CSV files, enabling reproducible, interpretable testing of the system’s classification 

and reasoning capabilities. 

Figure 6 illustrates one of the simulated datasets generated for this study, specifically the abnormal 

heart rate scenario. It shows timestamped heart rate values across an 8-hour simulated day, with 

color-coded segments representing different activity periods. The red-highlighted segment 

indicates an abnormal elevation in heart rate during the meal period, a low-energy-demand activity. 

Although Bryan’s baseline resting heart rate was defined at 79 bpm for simulation purposes, values 

in this segment rose above 100 bpm. This exceeds the clinically accepted resting range of 60–100 

bpm for a 70-year-old adult and was therefore modeled as a tachycardia-like event. The anomaly 

was intentionally introduced to test whether the system could identify potentially concerning 

physiological responses in contexts where an elevated heart rate is unexpected. 
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5.3 Data Analysis and Summaries Generation 

To ensure that the system could interpret heart rate data meaningfully and in a format suitable for 

language-based reasoning, a dedicated pre-processing step was implemented to convert raw 

simulation logs into structured and semantically rich datasets. This stage involved generating three 

intermediate .csv files and one final .json summary per user. These structured outputs ensured that 

both physiological data (heart rate) and behavioral context (activity) were aligned correctly and 

formatted for downstream interpretation. This step is crucial because the final system relies on 

structured, textual summaries rather than raw numbers as input for its language model–based 

interpretation. 

 
5.3.1 Structuring Raw Heart Rate and Activity Logs 
 

The first stage of data preparation involved generating three structured .csv files for each user, 

each serving a specific purpose in transforming raw simulation outputs into an interpretable 

dataset. 

 

The first file, user_hr.csv, recorded heart rate readings every two seconds throughout the whole 

8-hour simulation period. This file captured the user’s complete physiological trace with high 

temporal resolution, preserving detailed fluctuations in heart rate over time. 

 

The second file, user_activities.csv, documented the user's daily routine in broader segments. 

Each entry included a “start_time”, “end_time”, and an associated “activity” label such as "sleep", 

"work", or "exercise". These activity blocks typically spanned several hours, rather than matching 

the per-second resolution of the heart rate data. 

 

To create a unified view of the user’s physiological and behavioral state, we generated a third file, 

user_merged.csv, by aligning the two datasets. For each heart rate entry, the system identified the 

corresponding activity based on the timestamp and assigned it as a new label. As a result, a new 

row was generated in the merged file, combining every two-second timestamp with a heart rate 

value and its associated activity.  

Figure 6. Simulated dataset for the virtual subject Bryan (70-year-old male, baseline HR: 85 bpm) over an 8-hour day. 

Black points indicate time-stamped heart rate estimates generated every 2 seconds. Colored background segments 

correspond to the six simulated activities: sleep, work, walking, exercise, meal, and leisure. This structure enables the 

system to interpret heart rate trends within context, flagging abnormal elevations during periods of low energy demand, 

“meal” as potentially concerning in this case. 

Abnormal  
heart rate  
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Out of the three files, only the merged dataset (user_merged.csv) was used as input for the LLM 

pipeline. This file provided the combined temporal alignment of heart rate data and activity labels 

necessary for retrieval and prompt construction. The other files (user_hr.csv and 

user_activities.csv) served as intermediate outputs during preprocessing and were not directly 

accessed by the LLM. 

 
5.3.2 Summaries Generation: Preparing Data for Interpretation  
 

A final summarization step was performed to generate a .json file that would support more efficient 

interpretation by the system. Unlike the .csv files, which preserved high-resolution time series 

data, the .json summary was designed to condense the essential information into hourly snapshots. 

These summaries enabled a structured representation of physiological and behavioral trends, 

providing consistently formatted inputs suitable for semantic parsing and natural language 

generation. 

 

Each entry in the .json file corresponded to a single hour-long segment, beginning at hh:00:00 and 

ending at hh:59:59. For every such interval, the system extracted and stored key statistical features: 

“the minimum heart rate”, “maximum heart rate”, “mean heart rate”, and the “most frequent 

activity”. These fields are defined in Table 2, which presents the structure and meaning of each 

element included in the hourly summaries. Together, these summaries provided a structured, high-

level view of the user's physiological and behavioral state across the simulated hours. 

 

The decision to use hourly summaries was made to strike a balance between temporal resolution 

and interpretability. It can also be understood as a pre-retrieval strategy, consistent with 

frameworks outlined in recent systematic reviews [22]. An hour-long window is long enough to 

capture meaningful trends in heart rate and activity, while still aligning with how users typically 

refer to time in natural conversation (e.g., “around 1:30 PM”). In such cases, the system retrieves 

the summary for the 1:00–1:59 PM interval, ensuring that the response is grounded in a 

semantically relevant and temporally appropriate chunk. This design approach reduces time-

related ambiguity, improves coherence during question answering, and helps minimize 

hallucinations by constraining the model’s input to structured, factual summaries. 

 

In the simulated setup, this process resulted in nine hourly summaries per user, covering the 

monitoring period from 08:00 to 16:00. Each entry in the .json file followed the structure shown 

below: 

 
{ 

    "𝑠𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒": "2025 − 07 − 10 08: 00: 00", 
    "𝑒𝑛𝑑_𝑡𝑖𝑚𝑒": "2025 − 07 − 10 08: 59: 59", 
    "𝑚𝑖𝑛_ℎ𝑟": 47.85, 
    "𝑚𝑎𝑥_ℎ𝑟": 51.84, 
    "𝑚𝑒𝑎𝑛_ℎ𝑟": 49.85, 
    "𝑚𝑜𝑠𝑡_𝑐𝑜𝑚𝑚𝑜𝑛_𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦": "𝑠𝑙𝑒𝑒𝑝" 

} 
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Table 2. Structure of the preprocessed hourly summaries used for semantic retrieval and prompt grounding. 

Data Attribute  Description Format 

Start_tim 
Start timestamp of the hourly 

segment  

DD-MM-YYYY hh:mm:ss 

(e.g., 05-04-2025 9:00:00) 

End_time 
End timestamp of the hourly 

segment 

DD-MM-YYYY hh:mm:ss 

(e.g., 05-04-2025 9:59:59) 

Min_hr 
Minimum heart rate recorded  

within the hourly segment  

Float 

(e.g., 53) 

Max_hr 
Maximum heart rate recorded  

within the hourly segment  

Float 

(e.g., 94) 

Mean_hr 
Mean heart rate calculated over  

the entire hourly segment. 

Float 

(e.g., 72) 

Most_common_activity 
Most frequenctly detected 

 activity during the hour  

String 

(e.g., “Work”) 

 

5.3.3 Scenarios Configuration and Alert Triggering  
 

Scenario A: Alert-triggering abnormal profile 

The prototype incorporated an abnormal heart-rate alert, mimicking real-world systems that flag 

deviations from expected resting heart rate ranges for follow-up. The thresholding was based on 

physiological literature discussed in Section 5.2.2. 

Building on this, the alerting mechanism was configured with a conservative sensitivity threshold 

for the simulated case of an old male with a baseline resting heart rate of 79 bpm, ensuring 

reproducibility and alignment with the dataset’s demographic structure. An alert was triggered 

when the following conditions were met: 

- Context: the activity label indicated inactivity (NO_ACTIVITY, BASELINE). 

- Threshold: heart rate > 90 bpm (male cutoff). 

- Persistence: the elevation was sustained for ≥ 10 minutes, equivalent to ≥ 300 consecutive 

2-second samples (the simulated dataset produced a new estimate every 2 seconds using 8-

second windows shifted by 2 seconds). 

When these criteria were met, the system flagged the corresponding time span and stored it as an 

alert context. This storage mechanism enabled later retrieval without recomputation, ensuring that 

any reference to the alert remained anchored to the same underlying data. The retrieval process for 

follow-up queries using these stored contexts is described in Section 5.4.1. 
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Scenario B: Healthy baseline profile 

For this case, an old female with a baseline resting heart rate of 84 bpm was modeled as the healthy 

case. For this scenario, no abnormal alerts were configured; instead, her data were used to validate 

system interpretability in non-alert conditions. Queries focus only on time-based retrieval and 

summarization of logs, without triggering the alerting mechanism. The retrieval process for queries 

using this context is described in Section 5.4.1. 

This dual-scenario design allowed the prototype to demonstrate both (i) the system’s ability to flag 

and explain abnormal heart-rate events in an abnormal heart rate case, and (ii) its ability to support 

standard interpretability and reflection for a healthy-patient case.  

 

5.4 Interpretation Layer 

To generate responses that are contextually accurate, personally relevant, and grounded in real 

user data, this system implements an integrated interpretation layer composed of three core 

components: a Retrieval-Augmented Generation (RAG) pipeline, a locally deployed large 

language model (LLM), and an interactive conversational interface. Together, these elements form 

the backbone of the assistant’s interpretive logic, retrieving semantically relevant health 

summaries, processing them through prompt-based reasoning, and delivering responses through a 

user-facing interface. This section details how each component was designed and implemented to 

support trustworthy, real-time dialogue grounded in simulated heart rate data. 
 

5.4.1 Retrieval-Augmented Generation (RAG) for Grounded Responses  

To ensure that the assistant’s responses remain grounded in factual, patient-specific data and to 

mitigate the risk of hallucinations often associated with Large Language Models (LLMs), we 

implemented a Retrieval-Augmented Generation (RAG) pipeline customized for our simulated 

heart rate summaries. This approach enables the system to retrieve relevant physiological insights 

in real time and condition the language model’s output on that retrieved context. The process 

begins by converting hourly summary entries into semantically rich natural language text. These 

texts are then embedded into numerical vector representations, indexed for similarity search, and 

retrieved dynamically after the user submits a question. By embedding this factual memory layer 

into the prompting strategy, the assistant can produce responses that are not only interpretable and 

grounded in real trends but also tailored to individual users. 

Following the RAG workflow outlined in the most recent retrieval augmented generation for large 

language models systematic review and survey [17, 31], our implementation can be divided into 

four key stages, as shown in Figure 7. 
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Indexing. This process begins by processing structured hourly summaries generated from 

simulated physiological data. To prepare this data for interaction with a retrieval-augmented 

language model, each entry is converted into a plain-text sentence using a deterministic, template-

based formatter. This step ensures semantic clarity and makes the content compatible with 

language model input constraints, which include the minimum, maximum, and mean heart rate, as 

well as the most frequent activity label. The template used was: 
 

𝑐ℎ𝑢𝑛𝑘 =  ( 𝑓"𝐴𝑡 {𝑡𝑖𝑚𝑒_𝑠𝑡𝑟}, {𝑠𝑢𝑏𝑗𝑒𝑐𝑡. 𝑐𝑎𝑝𝑖𝑡𝑎𝑙𝑖𝑧𝑒()} 𝑤𝑎𝑠 𝑚𝑜𝑠𝑡𝑙𝑦 {𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦}. "            
𝑓"𝑇ℎ𝑒 ℎ𝑒𝑎𝑟𝑡 𝑟𝑎𝑡𝑒 𝑟𝑎𝑛𝑔𝑒𝑑 𝑓𝑟𝑜𝑚 {𝑚𝑖𝑛_ℎ𝑟} 𝑡𝑜 {𝑚𝑎𝑥_ℎ𝑟} 𝑏𝑝𝑚, 𝑤𝑖𝑡ℎ 𝑎𝑛 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 {𝑚𝑒𝑎𝑛_ℎ𝑟} 𝑏𝑝𝑚. " ) 

 
 

Each formatted sentence is treated as a standalone chunk to accommodate the language models' 

limited context window and support efficient retrieval, resulting in 16 chunks across two users as: 

 
01. At 8: 00, Alessa was mostly sleep. The heart rate ranged from 48 to 52 bpm, with an average of 50 bpm. 
02. At 09:00, Alessa was mostly work. The heart rate ranged from 72 to 76 bpm, with an average of 74 bpm. 

03. At 10:00, Alessa was mostly work. The heart rate ranged from 72 to 76 bpm, with an average of 74 bpm. 

04. At 11:00, Alessa was mostly work. The heart rate ranged from 72 to 76 bpm, with an average of 75 bpm. 

05. At 12:00, Alessa was mostly walk. The heart rate ranged from 83 to 98 bpm, with an average of 90 bpm. 

06. At 13:00, Alessa was mostly meal. The heart rate ranged from 67 to 98 bpm, with an average of 77 bpm. 

07. At 14:00, Alessa was mostly leisure. The heart rate ranged from 72 to 76 bpm, with an average of 74 bpm. 

Figure 7. Overview of the Retrieval-Augmented Generation (RAG) pipeline applied to heart rate interpretation. The system 

processes structured physiological summaries, retrieves semantically relevant chunks based on the user query, and generates 

context-grounded responses using a locally hosted Large Language Model (LLM). A comparison with a non-RAG response is 

included to illustrate the system's ability to generate personalized and data-grounded answers. 
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08. At 15:00, Alessa was mostly leisure. The heart rate ranged from 72 to 76 bpm, with an average of 74 bpm. 

09. At 08:00, Bryan was mostly sleep. The heart rate ranged from 47 to 51 bpm, with an average of 49 bpm. 

10. At 09:00, Bryan was mostly work. The heart rate ranged from 84 to 88 bpm, with an average of 86 bpm. 

11. At 10:00, Bryan was mostly work. The heart rate ranged from 84 to 88 bpm, with an average of 86 bpm. 

12. At 11:00, Bryan was mostly work. The heart rate ranged from 84 to 88 bpm, with an average of 86 bpm. 

13. At 12:00, Bryan was mostly walk. The heart rate ranged from 105 to 116 bpm, with an average of 110 bpm. 

14. At 13:00, Bryan was mostly meal. The heart rate ranged from 82 to 116 bpm, with an average of 92 bpm. 

15. At 14:00, Bryan was mostly leisure. The heart rate ranged from 83 to 87 bpm, with an average of 85 bpm. 

16. At 15:00, Bryan was mostly leisure. The heart rate ranged from 84 to 87 bpm, with an average of 86 bpm.  

 

 

The activity labels in these chunks (e.g., sleep, meal, leisure) are preserved exactly as they appear 

in the dataset to ensure reproducibility, even if some labels do not align perfectly with natural 

conversational phrasing. These chunks were encoded into dense vector representations using the 

SentenceTransformer model all-MiniLM-L6-v2 from HuggingFace, which produces 384-

dimensional embeddings optimized for semantic similarity tasks. To prepare them for cosine 

similarity search, all embedding vectors were normalized to unit length according to: 

 

𝑣̂ =
𝑣

||𝑣||
 

 

Where 𝑣 is the raw embedding vector, 𝑣̂ is the normalized unit vector, and ||𝑣|| represents the 

magnitude (length) of the vector. 

 

The resulting vectors were stored as a serialized file and indexed using FAISS with the 

IndexFlatL2 configuration, which computes inner product similarity equivalent to cosine 

similarity under vector normalization. While cosine similarity was chosen for its widespread use 

and reproducibility in semantic retrieval tasks, alternative similarity measures such as the 

(unnormalized) dot product between learned embeddings [49] could be explored in future 

iterations to examine potential trade-offs in retrieval performance. The resulting vector index was 

stored in a separate file-based vector database for each user (serialized as .pkl files using FAISS). 

 

This lightweight setup enabled user-specific retrieval and maintained isolation between simulated 

patient profiles while supporting local retrieval operations. In total, the index comprised 16 vectors 

associated with their corresponding text chunks, allowing for efficient and reproducible retrieval 

of semantically relevant summaries during interaction. 

 

Retrieval. The retrieval stage activates once a user submits a query through the assistant interface. 

To enable semantic matching between the query and the pre-processed summaries, the query is 

embedded using the same SentenceTransformer model (all-MiniLM-L6-v2) applied during 

indexing. Both query and chunks exist in the same 384-dimensional vector space, and the query 

embedding is normalized to unit length so that cosine similarity can be applied against the user-

specific FAISS index. 

 

When a query contains a time reference (e.g., “How was my heart rate at 11:00?”), the system 

maps the input to the nearest hourly summary and retrieves that single chunk (11:00–11:59 in this 

case). This one-to-one mapping ensures temporal precision and prevents the assistant from 

introducing ambiguity in its responses. In contrast, for queries without a specific hour reference 
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but  still general time-based (e.g., “Did my heart rate return to normal after the alert?”), the system 

performs a full similarity search across all summaries. It retrieves the top-k = 3 most relevant 

chunks (13:00-13:59,14:00-14:59, 15:00-15:59 in this case). This design choice was informed by 

common temporal expressions observed during testing, such as “later,” “morning,” or “afternoon,” 

which usually span multiple consecutive hours. Selecting the top 3 chunks allowed the system to 

offer enough context for such periods without exceeding token limits or introducing irrelevant 

content. This balance enabled the assistant to generate grounded and informative responses for 

broader temporal queries. 

 

In the case of alert follow-up queries, the system directly reuses the specific hourly chunk that 

triggered the abnormality alert. This chunk serves as the sole input for the assistant’s explanation, 

ensuring consistency between the initial alert and the system’s follow-up interpretation. The details 

of this alert-triggering data were described in Section 5.3.3. 

 

Similarly, when a user explicitly requests a broader summary of the entire monitoring period 

(e.g., “How was my heart rate today?”), the system retrieves all available chunks for that user 

(eight in the simulated dataset, i.e., 8:00-15:59). These are then aggregated and passed to the 

generation stage, allowing the assistant to provide a coherent overview of the full day’s heart rate 

and activity patterns. 

 

Generation. In the final stage of the RAG pipeline, the system generates a structured prompt by 

combining the user’s original query with the retrieved hourly summaries. This prompt is then 

passed to a locally hosted large language model (LLM) to produce the final response. 

 

To ensure safe and consistent behavior, the prompt follows a fixed template designed to produce 

semantically grounded responses. It includes: (1) the retrieved plain-language summaries, and (2) 

explicit instructions to the model, such as: responses must rely solely on the provided summaries, 

avoid any form of medical advice, and maintain a clear, empathetic tone suitable for health-related 

communication. A complete template and worked example for a specific query type is provided in 

Section 5.4.2 (Figure 8). This structure is enforced programmatically to standardize the assistant’s 

behavior across queries. 

 

By grounding generation in semantically relevant content, the system reduces hallucination risks 

and ensures outputs remain factually aligned with the user’s logged data. This work adopts a vector 

similarity–based definition of semantics, where the retrieved summaries serve as the sole input for 

the assistant’s explanation, ensuring consistency with the user’s logged context. As an alternative, 

ontology-based methods [50], which provide standardized, semantically rich vocabularies for 

representing domain knowledge, could be explored in future work to enhance consistency, 

interoperability, and contextual understanding in semantic retrieval. 

 
5.4.2 LLM-Based Interpretation and Prompt Design  

 
The large language model employed in this system is LLaMA 3.2 [32], an open-weight model 

from Meta’s LLaMA (Large Language Model Meta AI) family. This version was chosen for its 

strong performance in instruction-following and reasoning tasks, as well as its lightweight 

deployment requirements, making it suitable for local execution without reliance on external cloud 
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services or proprietary APIs. This local setup provides greater control over customization and 

supports the use of privacy-preserving measures with potentially sensitive personal health 

information.  

 

Running LLaMA 3.2 offline also facilitates faster iteration during prompt engineering, allowing 

complete control over the assistant’s tone, instructions, and behavioral constraints. To steer the 

model's behavior, we employed a structured prompt engineering approach, experimenting with 

various formulations to refine the assistant’s role and constraints. The final design embeds strict 

rules directly in the prompt to avoid invented values and explicitly references only the log data 

provided. These prompts are dynamically generated based on the type of user query and follow a 

structure informed by prompt engineering literature [33].  

 

Despite these safeguards, some variability in generated responses persisted due to the probabilistic 

nature of large language models. To minimize this, a low temperature setting (0.7) was used during 

inference. This value was chosen to balance helpfulness and response coherence, promoting more 

stable outputs while maintaining conversational tone. While this configuration helped reduce 

hallucination and excessive variation, minor inconsistencies in response length and detail still 

emerged, which is especially relevant in health-related contexts where clarity and predictability 

are crucial. This variability, although reduced, remains a known limitation and a significant risk in 

the deployment of generative models in healthcare, due to the complexity and sensitivity of the 

domain. 

 

The system supports four interaction types that determine how context is selected and how the 

prompt is framed for the language model: 

 

1) Specific time-based questions: For queries that contain an explicit time reference, the 

system retrieves the corresponding hourly summary. As described in Section 5.4.1, this 

ensures that the prompt is grounded in a single, well-defined log segment, keeping the 

response precise and context-specific.  

 

2) General time-based queries: As outlined in Section 5.4.1, this approach applies when 

queries do not specify an exact time but include relative temporal identifiers such as “after,” 

“before,” “morning,” or “afternoon.” In these cases, the three most relevant log intervals 

are selected and aggregated, providing a broader contextual basis for the prompt. 

 

3) Summary questions: In cases where the user requests a complete overview of the 

monitoring period, the system incorporates all available summaries for the day. As 

explained in Section 5.4.1, this provides the prompt with a full contextual scope, supporting 

day-level synthesis and interpretation.  

 

4) General health and wellness reflections: For wellness-oriented queries that are not 

anchored to specific log segments, the system bypasses the structured summaries and 

instead prompts the model to generate broader reflections. This mode poses a higher risk, 

as responses may draw on the model’s pre-trained general knowledge rather than strictly 

on the logged data. To mitigate this risk, the prompt includes explicit safeguards: the model 
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is instructed to avoid diagnostic statements, use non-clinical and supportive language, and 

frame its outputs as empathetic reflections rather than medical advice. 

 

5) Alert follow-up: In cases where the user refers back to a system-generated alert, the 

assistant reuses the specific log segment that initially triggered the warning (see Section 

5.3.3, “Alert-triggering data”). Anchoring the response in the same chunk that produced 

the alert ensures consistency and transparency. The assistant explains the flagged 

abnormality by reporting the heart rate range observed during the alert and situating it 

within the corresponding activity context.  

 

The structured prompt used in the generation stage comprises four main components, as 

summarized in Table 3. 

 
Table 3. Overview of the main components used in the prompt structure and their specific implementation within the 
heart rate assistant system. 

Component Definition Application in This Project 

Instruction 

The task the model is expected to 

perform, often used to set the 

assistant’s identity and boundaries. 

Specifies that the assistant acts as a 

personal heart rate assistant, explicitly 

excluding any diagnostic or clinical 

responsibilities. 

Context 

External reference material that 

guides the model toward accurate or 

relevant outputs. 

Includes summaries of log chunks 

retrieved via semantic search, aligned 

with the user’s data. 

Input Data 

The user's prompt, question or 

statement submitted for the model to 

respond to. 

User’s question, such as a specific 

time query or general health concern. 

Output 

A label or signal used to categorize 

or guide the expected form or scope 

of the model’s response. 

Signals what the assistant should focus 

on (e.g., summarizing the day, 

explaining an alert, or answering a 

follow-up).  

 

 

Figure 8 presents a worked example of the generation step for a time-based query. It demonstrates 

how the assistant integrates the retrieved log segment into the system prompt and frames explicit 

behavioral constraints. It combines this with the user’s question before sending it to the LLM, 

which produces an empathetic, data-grounded response. Additional examples covering the other 

prompt cases are provided in Appendix F for completeness. 

 
5.4.3 Conversational Interface  

 

The final layer of the prototype is a user-facing conversational interface built using Streamlit [34], 

an open-source Python framework that enables rapid development and deployment of custom web 
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applications for data-driven systems. To reproduce this component, install Streamlit via pip install 

streamlit, then launch the interface locally using streamlit run app.py. The main script (app.py) 

orchestrates both frontend layout and backend logic in a modular pipeline. 

 

This interface acts as the main interaction point between users and the system and includes: 

 

- A dropdown menu to select one of two predefined simulated users (defined in Section 

5.3.3). 

- A greeting header.  

- A free-text input field for user questions.  

- A chat-style response area rendered using st.chat_message() to display the assistant’s 

answers. 

 

All computation, including input parsing, log retrieval, prompt construction, and LLM response 

generation, occurs server-side. The interface remains lightweight and responsive, with Streamlit’s 

session_state used to preserve conversational context across queries.. 

 

Figure 9 illustrates two example interactions: 

 

• Left panel (Scenario A): The assistant responds to an alert for Bryan, an elderly male 

patient with an abnormal profile. It explains a flagged log segment where an elevated heart 

rate occurred during inactivity. 

 

• Right panel (Scenario B): The assistant answers a time-specific query for Alessa, a 

healthy elderly female patient. It retrieves the relevant log summary and contextualizes 

heart rate values in relation to the reported emotional state. 

 

These examples demonstrate how the assistant adapts to both the selected user profile and the type 

of query, whether alert-related or time-specific. Additional examples of interaction types and 

system responses are provided in Appendix G. The chosen user ID dynamically personalizes 

thresholds, simulated log access, and alert logic. This modular and context-aware design supports 

reproducibility, ensuring consistent, scenario-specific responses across various interaction types. 

 

While the assistant’s responses are grounded in retrieved heart rate summaries, open-ended or 

emotionally framed questions may still trigger interpretive statements that go beyond the available 

data. This introduces a risk of subtle hallucinations, especially when the model infers emotional 

states or behavioral patterns without direct physiological indicators. Although prompt instructions 

are designed to constrain such behavior, this remains a key consideration for future refinement and 

is discussed further in Section 8.2. 
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Figure 8. Example of the generation process for a time-based query, showing how retrieved context, system 

instructions, and the user’s question are structured and passed to the LLM to generate the final response. 
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Figure 9. Two examples from the Streamlit interface: (left) an alert-related interaction where the assistant explains elevated heart rate during 
inactivity; (right) a time-specific query where the assistant provides a contextualized summary of heart rate data for the hour inquired. For 
simplicity, the interface displays the start time of the hour (e.g., “at 13:00”), although technically the alert and retrieval correspond to the full 
hourly window (13:00–13:59). 
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5.5 System Iterations and Technical Evaluation Design  

This section introduces the three iterative prototype versions, followed by an overview of the 

technical evaluation setup and the metrics and datasets used. The actual performance results of the 

prototype versions and their interpretation are presented later in Chapter 7. 

 

5.5.1 Prototype Versions  

To support both the experimental and user-centered objectives of this research, three prototype 

versions (V1, V2, V3) were developed across successive design iterations. These iterations were 

informed by internal testing and insights gathered from user interactions, aligning with the two 

phases of the user study described in Chapter 6. 

 

Each version explored specific design trade-offs between retrieval scope, interpretability, 

faithfulness, and personalization. Together, they laid the foundation for both the user evaluation 

(discussed in Chapter 6, which includes aspects such as perceived clarity and trust) and the 

technical evaluation, whose results are reported and interpreted in Chapter 7. 

 

• Version 1 (V1), tested during the first phase, implemented timestamp-based chunk 

retrieval and rule-based personalization. However, it revealed limitations in conversational 

flow, vague responses to open-ended prompts, and a lack of interpretive framing for 

retrieved data. 

 

• Version 2 (V2), introduced in the second phase, expanded the scope of retrieval and 

adjusted prompt structures to better support general or non-specific queries. While this 

increased contextual richness, it also introduced new challenges related to verbosity, 

reduced personalization, and inconsistencies in factual grounding. 

 

• Version 3 (V3), deployed in the final phase, incorporated fallback mechanisms, age-based 

comparisons, and stricter prompt instructions. These adjustments improved 

contextualization and user alignment but introduced challenges in maintaining concise and 

factually faithful outputs. 

 

Each prototype thus represents a progressive effort to balance interpretability, retrieval quality, 

and safe communication in the context of health data interpretation. 

 

5.5.2 Evaluation Framework  
 

The system was evaluated using the Retrieval-Augmented Generation Assessment (RAGAs) 

framework [35], a methodology designed to assess both retrieval quality and generated responses 

in RAG pipelines. To ensure fairness, a cross-model setup was adopted in all evaluation cases: 

while the assistant itself ran on a local LLaMA 3.2 model, evaluation was performed using Mistral 

7B [47] as the external evaluator. This minimized architectural bias and improved the robustness 

of the results. 
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All three prototype iterations (V1, V2, and V3) were assessed with the RAGAs metrics of context 

relevance, faithfulness, and answer relevance to capture how retrieval accuracy, factual 

grounding, and response alignment with user intent evolved across versions. These iterations are 

more detailed and interpreted in Chapter 7. Following the iteration evaluations, the best-

performing version was selected for baseline comparison against a plain LLaMA 3.2 model 

without retrieval. For this step, the assessment was extended to include Factual Correctness (F1 

mode), providing an architecture-independent measure of factual overlap. 

 

Together, these complementary metrics measured improvements from iterative refinements in 

retrieval logic, prompt design, and context management, as well as answer correctness. They also 

enabled a fair assessment of the added value of retrieval compared to baseline models, 

complementing the findings from the user study presented in Chapter 6. 

 

5.5.3 Evaluation Metrics and Datasets  
 

The evaluation dataset was constructed using three representative questions designed to capture 

the full range of interaction types defined by the prompt framing in Section 5.4.2. These included 

time-specific queries, alert-related follow-ups, and general time-based reflections (see Appendix 

H for the complete dataset). While this dataset was used consistently across evaluations, in the 

baseline comparison, the retrieved context was excluded to isolate the effect of retrieval. 

 

Prototype Iterations Evaluation Metrics. To evaluate the three prototype iterations (V1, V2, 

V3), the study applied the RAGAs metrics of: 

 

- Context Relevance: evaluates whether the retrieved log chunks are semantically aligned 

with the user’s question. This ensures that the assistant grounds its response in information 

relevant to the query, rather than unrelated logs. 

 

- Faithfulness: evaluates whether the generated answer remains factually consistent with 

the retrieved context, without introducing unsupported or hallucinated content. 

 

- Answer Relevance: evaluates how well the generated response addresses the user’s 

question. 

 

Each evaluation required three elements: the user’s question, the assistant’s answer, and the 

retrieved context [34, 35]. An example of a time-based query is shown below: 

 
𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛 =  [“𝐻𝑜𝑤 𝑤𝑎𝑠 𝑚𝑦 ℎ𝑒𝑎𝑟𝑡 𝑟𝑎𝑡𝑒 𝑎𝑟𝑜𝑢𝑛𝑑 11: 30?  𝐼 𝑤𝑎𝑠 𝑠𝑡𝑟𝑒𝑠𝑠𝑒𝑑 𝑎𝑡 𝑡ℎ𝑎𝑡 𝑡𝑖𝑚𝑒. ”] 

 

𝑎𝑛𝑠𝑤𝑒𝑟 = [“At 11:30, your heart rate was stable while working. The readings ranged from 84 to 
88 bpm, with an average of 86 bpm. Given your age (70) and activity level at that time, 
your heart rate is within a healthy range according to European Society of Cardiology 
guidelines (60-100 bpm).” ] 

 
𝑐𝑜𝑛𝑡𝑒𝑥𝑡 =  [“𝐴𝑡 11: 00, 𝐵𝑟𝑦𝑎𝑛 𝑤𝑎𝑠 𝑚𝑜𝑠𝑡𝑙𝑦 𝑤𝑜𝑟𝑘. 𝑇ℎ𝑒 ℎ𝑒𝑎𝑟𝑡 𝑟𝑎𝑡𝑒 𝑟𝑎𝑛𝑔𝑒𝑑 𝑓𝑟𝑜𝑚 84 𝑡𝑜 88 𝑏𝑝𝑚, 

𝑤𝑖𝑡ℎ 𝑎𝑛 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 86 𝑏𝑝𝑚. ”] 
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The evaluation context in this setup is limited to recent log summaries and does not incorporate 

user-specific historical trends. For instance, while Bryan’s heart rate is reported as 86 bpm, 

clinically within range, the assistant cannot assess whether this is elevated for him personally (e.g., 

if his usual resting rate is closer to 70 bpm). This absence of longitudinal context limits the 

assistant’s ability to assess personalized deviations from baseline. A discussion of this limitation 

is provided in Section 8.2. 

 

These elements were compiled into an evaluation dataset using EvaluationDataset.from_list() from 

the RAGAs Python library. To ensure reproducibility, all evaluations were conducted offline using 

Mistral 7B to minimize bias and without reliance on external APIs. 

 

Baseline Comparison. Following the evaluation of prototype iterations, the best-performing 

version was selected for baseline comparison. This step measured the added value of the RAG 

pipeline by comparing it with a plain LLaMA 3.2 model without retrieval, setting the context 

parameter as an empty list (context = []). For this evaluation, the Factual Correctness (F1 score) 

was implemented alongside answer relevance.  

 

The F1 score measures factual overlap between system output and reference answers, combining 

precision (proportion of correct statements generated) and recall (coverage of relevant reference 

statements) into a harmonic mean [31, 37, 40]: 

 

 

𝐹1 =
2 ×  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

 

This provided an architecture-independent metric, ensuring a fair comparison between retrieval-

augmented and non-retrieval models. To ensure reproducibility, the implementation followed the 

naming conventions of the RAGAs Python library: 

 
 

𝑚𝑒𝑡𝑟𝑖𝑐𝑠 = [𝐶𝑜𝑛𝑡𝑒𝑥𝑡𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒(), 𝐹𝑎𝑖𝑡ℎ𝑓𝑢𝑙𝑛𝑒𝑠𝑠(), 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒(), 𝐹𝑎𝑐𝑡𝑢𝑎𝑙𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠()] 
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Chapter 6  
User Study  
To evaluate how LLM-based conversational interfaces can support patient understanding of heart 

rate data in the context of Digital Twin systems, a user study was conducted under Ethical 

Application #251615 of the Ethics Committee Computer & Information Sciences at the University 

of Twente and under Study Protocol IM-NL-SP-2025-0011 approved by imec’s internal ethics 

review process. The study addressed two research questions: (1) How can LLM-based 

conversational interfaces facilitate patients’ comprehension and interaction with health data from 

Digital Twin systems? (2) What are the risks and limitations of using LLM-based conversational 

interfaces in Digital Twin systems, and how do these affect patients’ trust and engagement with 

their health data? 

The user study aimed to validate both the performance and user experience of the proposed 

conversational assistant for heart rate interpretation within a Digital Twin system. Conducted in a 

controlled laboratory setting, the study simulated interactions based on a predefined elderly user 

profile representing an older adult without medical expertise, to assess whether the assistant could 

deliver clear, personalized, and supportive explanations. 

This chapter describes the participant criteria, study methodology, ethical considerations, 

prototype iterations tested, and the analysis of qualitative and quantitative results. 

6.1 Participants  

Participants were recruited internally at imec Netherlands via an internal mailing list and personal 

invitations. Recruitment materials outlined the study purpose, eligibility criteria, and voluntary 

participation. No incentives were offered. 

6.1.1 Participant criteria  

• Inclusion: Adults 18+ years, employees under an imec-Netherlands contract, proficient in 

English, comfortable with digital assistants, willing to consent to participation and audio 

recording. 

• Exclusion: Individuals with cognitive impairments or an inability to understand the task 

or provide informed feedback. 

6.1.2 Sample Size and Distribution  

The study included a total of nine participants, divided across two phases. In the exploratory phase, 

three participants each completed a single session, and the main evaluation phase involved six 

participants, each completing two sessions spaced one week apart. This design allowed for the 

assessment of system improvements over repeated interactions while minimizing participant 
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burden. It also helped evaluate participants’ comprehension, interaction, and how these affect their 

trust and engagement with health data. 

6.2 Study Phases  

To structure the user study effectively, the process was divided into two main phases: an 

exploratory phase and an evaluation phase. The exploratory phase focused on early usability 

testing of Prototype Version 1 with three participants, while the evaluation phase introduced 

Versions 2 and 3 to six new participants. Each phase followed a structured protocol involving 

scripted scenarios, participant interaction, and feedback collection. The iterative findings that 

emerged are discussed in greater detail in Section 7.1, which analyzes system performance and 

user experience across versions. 

6.2.1 Exploratory Phase  

This one-week phase aimed to identify usability issues and improve clarity in the early version of 

the assistant. Three participants each took part in a single 50-minute session that included: 

• 5-minute session for signed consent and introduction.  

• 30-minute session of continuous interaction covering two scenarios (abnormal heart rate 

alert and normal heart rate). 

• 15-minute semi-structured interview to collect feedback.  

This phase was essential for capturing initial limitations and informing the design of the next 

iteration. 

6.2.2 Evaluation Phase  

This two-week phase engaged six different participants to assess the assistant’s refinements in 

Versions 2 and 3. Participants attended two sessions spaced one week apart: 

a) Week 2: A 50-minute session that included a 5-minute consent and introduction, a 

30-minute interaction with prototype Version 2 covering both scenarios, aimed at 

identifying usability improvements from the first iteration, and 15 minutes for a 

semi-structured interview, which was audio recorded with prior participant 

permission.  

b) Week 3: a 50-minute session that involved a 40-minute interaction with prototype 

Version 3, including both scenarios, focused on evaluating improvements made 

over the second iteration (week 2), and lastly, 10 minutes for a digital questionnaire. 

 

6.3 Tasks and Scenarios 
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For each prototype session, we created different scenarios with the same structure, patient 

demographics, roles, situation, and study considerations. However, each had a unique sequence of 

questions tailored to the insights we aimed to gather (see Appendix A).  

6.3.1 Scenario A: Abnormal Heart Rate Alert  

In this scenario, the participant took the role of an older adult without medical or technical 

experience. The assistant started the interaction by notifying the user about an elevated heart rate:  

"Hi user, your heart rate was elevated around 13:00 today." 

The suggested sequence of actions required the participant to press the button to get a summary of 

the alert and then ask follow-up questions to understand better why the value was flagged, whether 

other abnormalities were present, and how it compared to normal heart rate ranges. The assistant’s 

role was to explain these trends clearly and factually in simple language, without offering medical 

advice. 

6.3.2 Scenario B: Healthy Heart Rate  
 

In this scenario, the participant acted as an older woman reviewing her daily activity without 

receiving alerts, but seeing this command in the interface, inviting the user to start the interaction: 

"Your heart rate looks good today, but feel free to ask the assistant if you want to reflect on 

anything!". 

The suggested sequence of actions encouraged the participant to ask the assistant about stable heart 

rate values, averages at specific times, or general reflections (e.g., stress or relaxation was reflected 

in the data). The assistant’s role was to provide summaries of normal trends, reassure the user 

about typical values, and maintain an approachable, non-clinical tone. 

6.4 Data Sources  

6.4.1 Data Types 

- Observational Notes: Manually recorded annotations of participants’ on-task behaviors 

and verbal reflections during “think-aloud” sessions captured indicators like hesitation, 

timing of follow-up questions, perceived confusion, and reactions to system responses. 

This qualitative dataset was digitized and anonymized, serving as contextual evidence 

alongside interaction logs and interview transcripts to identify usability challenges, 

engagement, and areas for prototype refinement. 
 

- Semi-structured Interviews: The interview questions followed a guided approach with 

ten open-ended questions (see Appendix B), ensuring consistency across participants while 

leaving room for personal experiences and unexpected insights. This format allowed 

participants to elaborate on moments of clarity, confusion, or trust, provide suggestions for 

system improvement, and share how supported or uncertain they felt during the interaction. 
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-  Audio Recordings: Interviews were recorded using a smartphone microphone. The 

recordings allowed accurate transcription and analysis, maintaining data integrity.  

- Questionnaire:  The usability questionnaire combined a 5-point Likert scale with open-

ended questions (see Appendix C), providing both quantitative scores and qualitative 

insights. The Likert items were informed by the principles of the Chatbot Usability 

Questionnaire (CUQ) and Bot Usability Scale (BUS-11), focusing on communication 

clarity, tone, trust, and role consistency. Open-ended questions asked participants to reflect 

on helpful aspects, areas for improvement, and comfort using the system independently, to 

identify improvements between interactions. 

- Interaction Logs: Structured transcripts of the entire dialogue between participant and 

assistant include timestamps, system events, and anonymized user inputs and responses in 

chronological order. This dataset offers a detailed record of how the assistant processed 

queries and generated outputs, aiding analysis of system performance, response accuracy, 

and flow. 

6.4.2 Data Collection  

Interviews were audio-recorded with a smartphone with prior consent, transcribed using 

TurboScribe, and the recordings were deleted immediately after. Transcripts were exported and 

archived offline as PDF files. Questionnaire responses were gathered through Google Forms, then 

exported and saved offline as Excel and PDF files. Observational notes were digitized after each 

session and saved with the dataset. User–assistant interaction logs were automatically captured 

and saved offline as structured PDF files (user queries, system responses, timestamps, fallbacks). 

All materials were anonymized and stored securely on a password-protected device for analysis. 

To protect participant confidentiality, all logs were stored offline on a password-protected device, 

and no data were transferred online or shared externally. 

6.5 Ethical Considerations  

Participants gave written consent after receiving a Subject Information Sheet (SIS), which outlined 

the study’s purpose, procedures, risks, data handling, and participant rights (see Appendix D for 

full details).   

6.6 Study Procedure  

The study followed a usability testing framework [30], applied during both the exploratory and 

evaluation phases, and structured into the following steps: 

Step 1: Session Setup. Each study session occurred in a meeting room where a laptop was 

prepared with the heart rate assistant ready. Before participants arrived, the researcher debugged 

and tested the prototype to prevent technical issues.  
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Step 2: Informed Consent Sign. Participants received the printed version of the Subject 

Information Sheet (Appendix D) outlining the study’s purpose, procedures, data practices, risks, 

and rights, including the right to withdrawal at any time. The researcher explained this verbally, 

answered questions, and obtained signed consent before starting the session. 

Step 3: Task Scenarios Execution. Printed papers with scenarios were provided, including 

descriptions of realistic use cases and tasks to follow. Participants engaged in two scenarios: A) 

Abnormal heart rate alert; and B) Healthy monitoring query. To minimize order effects, the order 

was counterbalanced: half of the participants started with one scenario type, the other half with the 

opposite. 

Step 4: Interaction Logging. After each scenario interaction, the researcher saved 

anonymized user inputs, system responses, timestamps, and fallback triggers. These logs were 

exported and stored as PDF files for later analysis. 

Step 5: Observational notes. Participants performed both tasks while the researcher observed 

and took notes. 

Step 5: Post-Interaction Interviews. After each first interaction in both exploratory and 

evaluation phases, participants completed a semi-structured interview (Appendix B), which was 

audio-recorded with their prior approval. 

Step 6: Post-Study Questionnaire. This step was only conducted after the final session 

involving Prototype Version 3 (Week 3 in the Evaluation Phase). Participants completed a Google 

Forms questionnaire (Appendix C) to evaluate various aspects of the interface, system responses, 

and the overall study. 

Step 7: Data Handling and Usage. Observation notes, transcripts, and logs were stored 

securely offline and used exclusively for research analysis. 

Step 8: Study Closure and Follow-Up. After completing the data collection, participants were 

thanked for their time and contribution. The researcher briefly summarized the next steps of the 

study and explained how the collected data would be used. Contact details were provided to 

participants who expressed interest in receiving updates about future prototype versions or the 

study results. 

6.7 Qualitative Results  

To analyze the qualitative data, a thematic analysis was conducted on the interview transcripts. 

The aim was to identify recurring patterns in participants’ perceptions of the conversational 

assistant and link them to the two research questions systematically. All transcripts were imported 

into Atlas.ti and coded using descriptive and in vivo coding, allowing participants’ quotes to enrich 

the analysis. 

Initial codes were grouped into shared categories based on thematic similarities and their relevance 

to either system behavior or user perception. Through an iterative clustering process, these were 

refined into six overarching themes that were not only frequently mentioned but also conceptually 
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aligned with the study’s two research questions. The chosen themes reflect critical aspects of the 

user experience with conversational agents in healthcare contexts, including how clearly the 

assistant communicates, the level of detail provided, the trustworthiness and consistency of the 

responses, and how users emotionally respond to the system. These themes are: 

1) Clarity and Comprehensibility 

2) Level of Detail 

3) Trust and Transparency 

4) Role Consistency 

5) User Experience and Emotional Impact 

6) Improvements and Features  

Importantly, these themes were derived from interviews conducted in both the exploratory and 

evaluation phases, ensuring that the analysis captured perspectives across multiple stages of system 

evolution. These categories were not mutually exclusive but reflected distinct focal points in the 

user feedback. For instance, a single participant comment might express both emotional 

reassurance (Theme 5) and concerns about inconsistent behavior (Theme 4). The first five themes 

offer structured insights into participants’ comprehension, trust, and engagement with the assistant, 

addressing the research questions. The Improvements and Features theme, in particular, provided 

concrete suggestions for system enhancements and directly influenced the following prototype 

versions. These iteration findings are discussed in Section 7.1 

Figure 10 offers a visual summary of the frequency and distribution of coded feedback themes 

across all participants. The height of each stacked bar represents the total number of coded 

segments per participant, reflecting the overall richness and volume of qualitative input provided 

during the interviews. The color segments within each bar correspond to the six identified themes, 

illustrating not only what was said, but also where each participant placed emphasis in their 

feedback. 

For example, Participant 1, involved in the exploratory phase, shows the highest overall number 

of comments, with particularly large contributions to Clarity and Comprehensibility and User 

Experience and Emotional Impact. This suggests a participant who was highly expressive and 

reflective about the system's communication style and transparency, offering rich, descriptive 

feedback on how information was delivered and perceived. However, Participant 1 contributed 

relatively less to Improvements and Features, implying that while they were deeply engaged in 

interpreting the assistant’s behavior, they provided fewer concrete suggestions for system 

refinement, possibly due to the early-stage nature of the prototype. 

In contrast, Participant 7, who participated during the evaluation phase, focused more on Trust and 

Confusion and provided fewer comments related to User Experience and Emotional Impact. This 

shift may reflect the increased complexity of the second prototype version, which, while more 

feature-rich, may have introduced ambiguity or uncertainty around system reasoning. 
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Consequently, the participants’ feedback concentrated on how much they trusted the assistant’s 

outputs, rather than their emotional response or engagement level. 

This variation across participants reinforces the value of including both expressive and concise 

users in qualitative studies. While some participants helped surface broader comprehension and 

trust-related challenges, others offered focused, actionable feedback that directly supported 

iterative system improvements. 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

6.7.1 Thematic Analysis  

This coding process was used in both the Exploratory and Evaluation Phases to compare changes 

in perception as the prototype evolved. To gather insights on how LLM-based conversational 

interfaces can improve patients’ understanding and interaction with health data, we proposed two 

themes:  

Figure 10. Distribution of the six identified themes across participants in both 

Exploratory and Evaluation phases generated in Atlas.ti. 
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• Clarity and Comprehensibility. This theme emerged because participants frequently 

evaluated whether the assistant’s responses were understandable. Codes such as “clear,” 

“easy to follow,” and “not aligned with the question” highlighted the centrality of clarity 

in shaping comprehension. Early misalignments were noted, as Participant 2 in V1 

mentioned: “It is not clear apart from the heart rate numbers; without context, I don’t feel 

it’s clear enough.” In a later iteration, issues shifted toward conversational continuity, like 

Participant 8 remarked:  “I can understand the answers, but sometimes I felt they were 

contradicting, probably because there is no connection in the historical conversation.” 

• Level of Details. The amount of detail was perceived differently by participants. While 

some valued longer, more comprehensive outputs, others felt overloaded by repetition. For 

example, Participant 1 in V1 appreciated the richness: “There is a lot of detail, and it feels 

like talking to someone present, caring for and supporting you during this.” In contrast, 

Participant 3 in V2 described the experience as overwhelming: “The repeated information 

made me feel overwhelmed.” This divergence revealed a tension between 

comprehensiveness and conciseness. 

Similarly, to identify the risks and limitations of using LLM-based conversational interfaces and 

how these affect trust and engagement, the following themes were derived:  

• Trust and Confusion. Several codes clustered around concerns with “vague,” 

“contradictory,” or “uncertain” responses. The need for source clarification (logs vs. 

general knowledge) was repeatedly noted, making confusion a core dimension of perceived 

trustworthiness. In V1, confusion arose from misleading outputs. Participant 2 observed: 

“I asked to further look into my well-being, and it sticks to the dataset, so that’s 

misleading”. Similarly, participant 3 reported: “When I referred to my age, it understood it 

as a time”. In V2, trust was compromised in different ways. Participant 9 reflected: “I find 

it hard to trust if it did not answer my question. It felt like it wasn’t paying attention to me”. 

Participant 4 also highlighted the lack of transparency: “When I asked how it got my data, 

I think there should be some prepared answer. The heart rate calculation should already 

have some background or contact information available for the system to reply”. Together, 

these comments reveal that while participants valued accuracy, their trust ultimately 

depended on the system's ability to provide clear, consistent, and transparent responses. 

• Role Consistency. Codes such as “not diagnosing,” “referring to a doctor,” and “not 

clinical advice” appeared across multiple transcripts. Participants emphasized that the 

assistant maintained a clear boundary by not presenting itself as a medical professional. 

For example, Participant 5 in V2 noted: “It did not try to make any suggestions about my 

health status; it always suggested going to a qualified healthcare professional, so that is 

good.” Similarly, Participant 7 remarked: “Yes, to me that is clear, the system is very safe 

in not acting as a medical professional.” Participant 9 confirmed this perception: “It is not 

acting as a medical professional. Regarding this, it’s quite consistent.” This reinforced the 

assistant’s framing as a supportive tool rather than a diagnostic authority, a role boundary 

that participants valued for safety and trust. 
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• User Experience and Emotional Impact. Participants consistently noted that the 

interaction flow and emotional tone influenced their engagement. Codes such as 

“supportive,” “non-alarming,” and “not connecting” coalesced into this theme, 

highlighting the dual role of reassurance and frustration in the user experience. In Version 

1, Participant 1 reflected positively: “Very convenient to have someone to chat about your 

health. I think especially for older people this could be helpful”. In Version 2, participants 

provided both supportive and critical feedback. Participant 4 appreciated the system’s 

reassurance: “I like that when I specified that I didn’t understand the answer, it assured me 

that it’s easy to find it all overwhelming. That made me feel supported in my lack of 

knowledge.” Similarly, Participant 7 emphasized the importance of role boundaries: “I felt 

safe that the system was not trying to play the doctor.” However, frustrations also emerged, 

as Participant 5 noted: “It was a distant conversational partner. Sometimes it didn’t read 

my question correctly and gave me answers that did not match my questions.” 

Participants suggested refinements for the prototype, organized under a theme to improve usability 

and engagement across iterations and the user study, offering valuable insights.  

• Suggestions and Features. This theme was not directly tied to the research questions but 

emerged from participant proposals coded as “suggestion,” “improvement,” or “feature 

request.” These inputs reflected personal preferences and were tracked separately to guide 

iterative development of later prototypes. In Version 1, participants emphasized the need 

for shorter and more accurate responses. For example, Participant 2 suggested: “The system 

can be extended to other contexts outside heart rate; people want to know more about 

health in general.” Similarly, Participant 3 recommended, “Have a bigger dataset or a 

more critical scenario to see how it behaves.” In Version 2, suggestions focused on linking 

answers more explicitly to evidence and keeping responses concise. Participant 6 noted: 

“Link the answers to evidence,” while Participants 8 and 9 both requested “shorter 

answers.” 

 

6.7.2 Findings by Study Phase  

Exploratory Phase 

During the exploratory phase, participants interacted with the first version of the prototype 

(described in Section 5.5.1), which highlighted issues of clarity, repetition, and conversational 

fragmentation. While the assistant’s neutral tone was perceived as reassuring and its role 

boundaries were clear (i.e., not acting as a medical professional), participants frequently 

encountered contradictory outputs when referring to standard heart rate ranges and limited memory 

across exchanges. The assistant struggled with broad or open-ended queries, often defaulting to 

narrow, log-based responses that lacked personalization (see Appendix I, Example 1). Preferences 

for the level of detail varied significantly: while some users valued factual brevity, others desired 

more explanatory or contextualized responses. Participants also proposed design enhancements, 

such as a flexible response length (allowing users to decide), a larger font size, and improvements 

to conversational continuity. 



 

 60 

Evaluation Phase  

Participants engaged with the second prototype version (described in Section 5.5.1), where 

improvements such as broader context retrieval, refined tone, and personalization were tested. 

Feedback suggested improvements in clarity, role consistency, and a general increase in perceived 

trustworthiness, as some users appreciated the contextualized explanations and the assistant’s 

consistent role boundaries. However, this improvement in trust was not universal. Some 

participants continued to express doubt about how the assistant generated its responses, 

particularly when the source of the information (log data vs. general knowledge) was unclear 

(Appendix I, Example 2). This reflects an important distinction between faithfulness (i.e., whether 

the assistant’s outputs matched the retrieved data) and perceived trustworthiness (i.e., whether 

users felt they could rely on those outputs). In other words, even when the assistant was technically 

accurate, trust was compromised when the assistant did not disclose the source of the information 

or how it was generated. 

Table 4 illustrates how the six themes were identified across both study phases, highlighting the 

particular challenges addressed in the second version and the new ones that emerged following the 

improvements. While the thematic analysis focused on the exploratory (V1) and evaluation (V2) 

phases, additional findings from Version 3 (V3) are discussed in Section 6.7.3, based on 

quantitative user ratings and open-ended survey feedback. These insights build on the thematic 

trends identified here and provide additional validation of the design iterations. The comparison 

highlights both continuity and change, reflecting how participants’ perceptions evolved as the 

prototype developed.  

Table 4. Themes across exploratory and evaluation phases (V1 and V2), based on qualitative data analysis, addressed 
challenges, newly emerged issues over iterations, and the evolution of participants’ perceptions. 

Theme Exploration Phase Evaluation Phase 

Clarity and 

Comprehensibility 

Repetition and contradictory 

statements confused users 

More contextualized answers and age-based 

comparisons, some users still found 

explanations too repetitive. 

Level of Details Mixed preferences: brief and factual 

answers versus detailed explanations 

Meaningful but short explanations were 

provided, not informative enough  

Trust and 

Confusion 

Contradictions and lack of clarity 

about answers source. 

Some trust gained through contextualized 

demographic comparisons, but doubts remained 

about source transparency 

Role Consistency Boundaries were clear with referrals 

when needed 

Consistency reinforced with supportive but 

non-clinical framing 

User Experience 

and Emotional 

Impact 

Neutral, non-alarming tone valued; 

however, lack of conversational 

memory, fragmented interactions 

More natural dialogue and supportive tone as 

strengths, but still noted gaps in memory and 

flow 

Suggestions and 

Features 

Flexible response lenght, larger font 

size, and conversational memory 

Multimodal outputs (graphs, voice), stronger 

memory, and more personalized comparisons 
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6.8 Quantitative Results  

This section presents the findings obtained through a post-interaction questionnaire and open-

ended reflections, administered via a Google Form link after participants interacted with Prototype 

V3 (described in Section 5.5.1) during the second evaluation session. 

6.8.1 Likert-Scale Questionnaire Analysis  

To complement the qualitative findings, descriptive statistics were calculated from the 

questionnaire responses. Four participants (N = 4) completed the Likert-scale (1–5, strongly 

disagree → strongly agree) questionnaire, which assessed perceptions of the assistant’s clarity, 

supportiveness, confidence in use, interpretability, naturalness, perceived safety, and 

improvements across prototype iterations.  

Following common HCI and usability research conventions, means and standard deviations (SD) 

are reported to summarize overall trends, especially when small sample sizes are present, as 5-

point Likert items are treated as interval data for practical purposes [51]. However, to respect the 

ordinal nature of the scale, where the numeric intervals between categories (1 → 2 may not be 

perceived as the same “size” as 4 → 5), median and interquartile range (IQR) were included to 

reflect non-parametric distribution summaries. This dual reporting provides a more complete 

summary while accounting for non-parametric characteristics. 

Table 5 presents the descriptive statistics of participants’ evaluations. These quantitative insights 

support and help contextualize the qualitative themes discussed in Section 6.7. 

Table 5. Descriptive statistics of four participants’ Likert-scale evaluations (N = 4). The table presents participants’ 
assessment of the conversational assistant across clarity, supportiveness, confidence in use, interpretability, naturalness, 
safety, and improvements over prototype iterations.  

Questionnaire Dimension Mean SD Median IQR 

Response clarity 4.25 0.50 4.0 0.25 

Supportive tone 5.00 0.00 5.0 0.00 

Confidence in use 4.25 0.50 4.0 0.25 

Interpretation support 3.75 0.96 3.5  1.25 

Naturalness of interaction 4.25 0.50 4.0 0.25 

Communication improvements 4.75 0.50 5.0 0.25 

Responsiveness to feedback 4.50 0.58 4.5 1.00 

Role safety (no diagnosis) 4.75 0.50 5.0 0.25 
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6.8.2 Open-Ended Questions Analysis  

In addition to the Likert-scale items, the post-interaction questionnaire administered during the 

second evaluation session included a series of explicit open-ended questions. These were designed 

to elicit reflective feedback from participants after engaging with Prototype V3. Responses were 

submitted through the same Google Form, serving to contextualize participants’ evaluations and 

offer more nuanced insights into their experiences with the final version of the system and their 

expectations for future improvements. A thematic analysis of these structured responses revealed 

both strengths and limitations in the assistant’s design, highlighting the following themes of 

interest: 

Helpful aspects of the assistant  

Participants appreciated contextualized communication, particularly the ability to compare heart 

rate values with peers of the same age group and to explain the seriousness of alerts. Others 

highlighted the assistant’s role in providing insights and recommendations for health maintenance, 

noting its usefulness as an AI agent focused on heart rate–related issues. 

“The assistant provided context to its communication.” 
- Participant 7 

Confidence in future use  

Most participants indicated they would feel comfortable using the assistant independently, citing 

its ease of use and helpfulness in interpreting heart rate data. However, concerns emerged 

regarding the generality of healthcare recommendations and privacy. One participant emphasized 

that comfort depended on assurance that personal data and conversations would not be shared 

externally. 

“I would feel comfortable using an assistant like this one as long as my data, prompts, and 

 conversations would stay with me.” 
- Participant 7 

Perceived improvements between versions 

Participants in this session interacted with earlier versions (V1 and V2) during the exploratory and 

evaluation phases. Their comments reflected clear improvements in Prototype V3, including more 

consistent data presentation, better alignment between time and age, and reduced verbosity.  

 
“The latest model can contextualize the answer. This makes me trust the model more 

 because it gives more useful information.” 
- Participant 9 

Additional suggestions  

Feedback pointed to conversational flow as a significant area for refinement. Participants reported 

that the assistant sometimes failed to account for previous inputs, struggled with clarity when units 

were unspecified, or produced overly long responses. Suggested enhancements included enabling 

more profound exploration of personal data (e.g., history, trends, lifestyle influences), supporting 

multimodal interaction, and ensuring outputs remain concise and specific. 
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“It should have a better flow of conversation. It seems not to be aware of the latest  
question it was asking me.” 

- Participant 6 

 

General impressions  

Overall feedback was positive. Participants valued the presentation of heart rate data, describing 

the system as “helpful” and “nice.” They also expressed interest in its local implementation and 

application of RAGs in a sensitive health domain. At the same time, they emphasized the 

importance of keeping the assistant’s scope limited to its defined health-related role and of 

ensuring communication remains specific and trustworthy. 

These findings contribute to answering the research questions by offering concrete evidence for 

each. For RQ1, they highlight design features that enhance patient understanding and interaction. 

For RQ2, they illustrate the conditions under which trust and engagement may be compromised. 
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Chapter 7  
Results Interpretation  
 
This chapter presents a comprehensive interpretation of both the technical evaluation and user 

study findings across the three prototype iterations previously introduced in Chapters 5 and 6. Each 

version reflects a progressive evolution in retrieval logic, prompt strategy, and personalization 

design, shaping how the assistant communicated health-related insights. By integrating structured 

evaluation metrics with qualitative user feedback, this analysis highlights how each prototype 

influenced perceived trust, clarity, and interpretability. It also brings forward key trade-offs 

between retrieval faithfulness and supportive explanation, which emerged during the design 

process. 

 

Additionally, this chapter presents the results of a post-hoc evaluation using enhanced contextual 

summaries, conducted following the user study. This extension aimed to investigate the limitations 

of the retrieval strategy employed during development, particularly the model’s ability to ground 

its answers in enriched, semantically meaningful input. Since users did not interact with the 

enhanced contexts during their participation, this evaluation provides a technical validation layer 

rather than user-informed insights.  

 

Finally, the chapter includes a baseline comparison between the top-performing prototype (without 

enhanced context) and a non-RAG version of the model (LLaMA 3.2 without retrieval), offering 

a clearer view of the value added by integrating contextual evidence. 
 
7.1 Prototype Iterations Findings  
 
This section analyzes how the assistant evolved based on both technical metrics and user feedback, 

with a focus on the three core prototype versions introduced in Section 5.5.1. The analysis aims to 

understand which design decisions improved the system’s interpretability and which introduced 

new challenges. Each iteration addressed specific issues identified in earlier versions, such as 

retrieval logic, prompt clarity, and alignment with user intent. 

 

By combining the RAGAs' evaluation metrics context relevance, faithfulness, and answer 

relevance with user perceptions gathered in Chapter 6, the analysis reveals how each version 

influenced participants’ trust, clarity of interaction, and perceived usefulness. This section also 

surfaces the limitations and trade-offs that guided future refinements, including the tension 

between factual precision and user-centered communication. 

 

Table 6 summarizes the evaluation results using the original retrieval configuration, providing a 

foundation for comparing how system behavior evolved across iterations. 
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Table 6. RAGAs evaluation scores for three prototypes (V1, V2, V3) using original contexts, comparing performance in 
Context Relevance, Faithfulness, and Answer Relevance. 

Prototype Version Context Relevance Faithfulness Answer Relevance 

HR Assistant (V1) 0.0000 0.3750 0.5282 

HR Assistant (V2) 0.0000 0.4167 0.5063 

HR Assistant (V3) 0.0000 0.2000 0.5321 

 
 

7.1.1 Iteration 1: Establishing the Baseline  
 
The first version (V1) served as a foundational proof of concept, incorporating timestamp-based 

chunk retrieval and basic rule-based personalization. RAGAs metrics revealed moderate 

faithfulness (0.3750) and answer relevance (0.5282), but (0.0000) context relevance, confirming 

that raw summaries lacked sufficient semantic grounding to support strong alignment. 

 

User feedback reflected a mismatch between the system’s technical grounding and the clarity of 

its responses. Participants described outputs as verbose, repetitive, and fragmented, with 

contradictory statements about standard ranges surfacing when the assistant struggled to reconcile 

multiple retrieved values. Importantly, the assistant’s neutral tone reassured users that it respected 

its boundaries and did not attempt to act as a medical specialist. Despite these limitations, 

participants acknowledged that the assistant made their heart rate data easier to follow than reading 

the logs directly. Several also valued its interpretive framing, which helped contextualize raw 

numbers without overstepping into diagnostic territory. 

 

This version highlighted the core challenge of iteration: the technical ability to ground responses 

did not automatically translate into clear interpretation. For example, as illustrated in Figure 11, 

when users asked open-ended questions like “What’s the heart rate value for a person of my age?”, 

the assistant often retrieved the last-used chunk but failed to provide a direct or demographically 

personalized answer. These limitations underscore the need for improved conversation flow, more 

precise explanations using age-based benchmarks, and mechanisms to handle broader or 

ambiguous queries without defaulting to overly narrow, log-focused outputs. At the same time, the 

prototype already demonstrated potential to provide supportive, non-clinical value, laying the 

groundwork for subsequent refinements. 

 
7.1.2 Iteration 2: Refining Contextualization  

 
The second iteration addressed the limitations observed in Version 1 by introducing broader 

retrieval strategies and refining the prompt structures to accommodate more open-ended time 

references, resulting in prototype Version 2. A key design change was the expansion of retrieval 

scope: the assistant should now return three chunks per query when needed, aiming to support 

questions referencing broader timeframes such as “later” or “before” instead of strictly matching 

a single hour. This change aimed to enhance contextual understanding and enable the assistant to 

respond to more flexible temporal queries with relevant background information. However, the 
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system did not consistently interpret these vague time expressions as intended. In many cases, it 

still defaulted to retrieving a single chunk based on the most clearly detected hour, rather than 

retrieving adjacent summaries to cover a broader range. For instance, as shown in Figure 12, when 

users asked questions like “What happened after the alert? Did my heart rate get better?”, the 

assistant acknowledged the ambiguity but still provided a narrow response, failing to retrieve 

adjacent chunks that could answer the full question scope. 

 

 Technically, while context relevance remained at 0.0000, still reflecting the strict standards of the 

Mistral-based evaluator, faithfulness improved (0.4167), likely due to reduced hallucination from 

using a narrower context. At the same time, answer relevance decreased (0.5063), since the 

assistant’s responses were often too narrow for the intended timeframe. This outcome highlights a 

critical trade-off: limiting retrieval scope can enhance factual grounding, but it may misalign the 

response with the broader user intent. Despite the use of structured prompts and a low LLM 

temperature (set to 0.7 in the prototype to encourage conversational yet stable responses), some 

variability in the generated output persisted, occasionally affecting the length or level of detail. 

While this inconsistency was minor in terms of answer content relevance, it nonetheless 

underscores a broader challenge in applying generative models within health contexts, where 

predictability, clarity, and user trust are paramount. 

 

Qualitative feedback gathered during this phase of the user study highlighted that the assistant was 

perceived as informative, neutral in tone, and capable of contextualizing alerts and clarifying their 

meaning, especially through age-based comparisons and trend framing. For example, instead of 

simply reporting a high heart rate, the assistant explained whether the value was abnormal for the 

participant’s profile and the relation to the activity. Participants appreciated that the system helped 

them interpret alert severity and understand heart rate values in more meaningful ways. While 

concerns remained around verbosity, limited personalization, and weak continuity in follow-up 

exchanges, most users continued to describe the assistant as a helpful tool, particularly for 

interpreting logs rather than providing clinical advice. 

 

Overall, Iteration 2 exemplified the trade-offs introduced by expanding retrieval: while the 

assistant’s responses became more contextual and better suited to general health questions, both 

the technical metrics and user insights revealed persistent issues with conciseness, personalization, 

and conversational flow. This iteration reaffirmed the complexity of balancing broader 

contextualization with factual precision, while also reinforcing the importance of maintaining the 

assistant’s non-diagnostic, supportive role. 
 

7.1.3 Iteration 3: Personalization and Trade-offs  
 
Iteration 3 introduced demographic-aware personalization alongside an even broader retrieval 

strategy. For this version, the system successfully aggregated summaries, including Morning, 

Midday, Afternoon, and Day Overview, using the available heart rate data. These summaries 

required retrieving three chunks at once, and in the case of a full-day query, up to eight chunks. 

The intent was to offer more user-aligned answers, particularly in cases involving high heart rate 

alerts or broader-context health reflections. As shown in Figure 13, the assistant was able to deliver 

a well-structured daily summary that included a timestamped table of activities and heart rate 
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values, followed by observations highlighting stability and occasional peaks, demonstrating the 

improved interpretability of the final prototype. 

 

This design decision directly impacted technical results: answer relevance rose to 0.5321, 

suggesting that responses were still perceived as reasonably informative and aligned with the query 

intent, even if not strictly faithful to the retrieved data. While the context relevance stayed at 

0.0000, reflecting Mistral's strict evaluation standard when contextual overlap is not verbatim 

reproduced in responses. However, faithfulness dropped sharply to 0.2000 as the model struggled 

to reproduce every detail in large contexts, a low score, especially for health systems relying on 

factual accuracy. While avoiding hallucinations and clinical claims ensured safety, it limited the 

ability to reflect all retrieved facts verbatim. Processing more chunks increased information load, 

raising expectations for completeness and risking omission or rephrasing of critical details. 

 

Although according to RAGAs, there was a drop in faithfulness, in practice, factual elements such 

as average heart rate, ranges, and logged activities were consistently accurate in the answers. The 

challenge was in capturing the broader descriptive content of multiple chunks, which often resulted 

in longer, more scattered responses that could not concisely mirror the relevant information. This 

trade-off highlights a key tension in retrieval-augmented systems: expanding context enhances 

interpretive value for users but reduces strict fidelity to the retrieved logs in their exact form.  

 

This challenge is not only technical but also semantic. When synthesizing multiple chunks, the 

assistant must reconcile overlapping concepts and expressions that may differ slightly in meaning 

across logs. Semantic ambiguities can emerge, particularly in cases involving vague terms like 

"normal," "high," or "alert," which may shift subtly depending on the source chunk. In health-

related systems, such variations can affect user interpretation, making semantic precision as 

important as factual correctness. While this version of the assistant aimed to reduce such risks 

through logic-based query handling, grouping similar expressions under shared intent categories 

to minimize ambiguity, there remains an inherent risk of newly emerging or context-specific terms 

that may not be fully captured, highlighting the ongoing need for adaptive semantic handling in 

future iterations. 

 

Questionnaire results show participants rated the assistant positively across most areas. The highest 

score was observed for Supportive tone (M = 5.0, SD = 0.0), where M refers to the mean score 

and SD to the standard deviation, indicating unanimous agreement that the assistant communicated 

in a respectful and supportive way. Similarly, perceived safety (M = 4.75) was evaluated very 

positively, reflecting trust in the assistant’s boundaries and recognition of progress across 

prototype versions. While Communication improvements (M = 4.75) and Responsiveness to 

feedback (M = 4.50) were similarly assertive, suggesting that participants noticed changes in the 

assistant’s behavior based on prior suggestions. Clarity of responses, Confidence in use, and 

Naturalness of interaction, each with (M = 4.25), showed that participants generally experienced 

the system as straightforward, usable, and realistic, though not without minor limitations. By 

contrast, Interpretation support received the lowest mean score (M = 3.75, SD = 0.96), indicating 

variation in how well participants felt the assistant helped them understand their heart rate data. 

Taken together, the results suggest that the last assistant iteration (version 3) was perceived as 

supportive, safe, and progressively improving; however, it still requires refinement in delivering 

explanations and interpretive guidance. 
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Open-ended comments further reinforced this ambivalence. Participants welcomed features like 

age-based benchmarks and clearer alert framing, but also pointed out gaps in memory, conciseness, 

and conversational flow. Nevertheless, this was the first iteration where users consistently 

described the assistant as trustworthy, supportive, and practically helpful in contextual 

communication on their heart rate data. In short, Iteration 3 was seen as more supportive, 

contextual, and trustworthy, but less factually precise. Comments praised design features like age-

based comparisons and health insights, while highlighting risks and concerns from the participants, 

such as generic advice and privacy issues. This underscores a broader lesson: more retrieval 

enhances the relevance of the answer but may risk diluting faithfulness and increasing verbosity. 

 

Conversely, comparison with the baseline LLaMA 3.2 further clarifies these dynamics. While the 

baseline model achieved higher faithfulness (0.5500) than the RAG-enhanced assistant (0.3967), 

its answer relevance was substantially lower (0.4000 compared to 0.7800). This suggests that the 

baseline model, operating without retrieval, tended to remain closer to its limited input but was 

unable to generate answers that users would find sufficiently informative or aligned with their 

queries. By contrast, the RAG pipeline introduced contextual evidence that allowed the assistant 

to provide richer and more relevant responses, even if this came at the expense of reproducing 

every retrieved detail with perfect fidelity. In the context of health-related conversational agents, 

this comparison highlights that retrieval significantly contributes to interpretive usefulness and 

perceived value, even though it introduces challenges for maintaining strict factual accuracy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Response from Iteration 1 illustrating the assistant’s inability to address open-ended queries.  
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Figure 12. Response from Iteration 2 demonstrating the assistant’s limited ability to follow up on vague time-based 
questions. 

Figure 13. Response from Iteration 3 showcasing improved handling of broad daily summary requests. 
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7.1.4 Post-Hoc Enhanced Context Evaluation  
 

The technical evaluation results showed that context relevance remained at 0.0 across all iterations, 

indicating that the original contexts (summaries of physiological data associated with activities) 

did not provide sufficient cues for effective retrieval. This strict outcome also reflects the 

conservative scoring of the Mistral 7B evaluator, which only marked contexts as relevant when 

they provided direct and explicit support to the query. The limitation was not always evident in 

answers, as prompts to the LLM avoided unhelpful responses. However, the evaluation results 

revealed the need to test enriched contexts, which included interpretive elements such as activity-

aware thresholds and demographic framing, to improve responses. This confirmed that evaluation 

metrics were effective, and issues stemmed from the quality of summaries, rather than the retrieval 

technique itself. An example is shown below (see the complete enhanced contexts in Appendix 

H). Table 7 presents the results of the prototype iterations evaluated with enhanced contexts. 

 

 
𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙_𝑐𝑜𝑛𝑡𝑒𝑥𝑡 =  [“𝐴𝑡 11: 00, 𝐵𝑟𝑦𝑎𝑛 𝑤𝑎𝑠 𝑚𝑜𝑠𝑡𝑙𝑦 𝑤𝑜𝑟𝑘. 𝑇ℎ𝑒 ℎ𝑒𝑎𝑟𝑡 𝑟𝑎𝑡𝑒 𝑟𝑎𝑛𝑔𝑒𝑑 𝑓𝑟𝑜𝑚 84 𝑡𝑜 88 𝑏𝑝𝑚, 

𝑤𝑖𝑡ℎ 𝑎𝑛 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 86 𝑏𝑝𝑚. ”] 
      
 

𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑_𝑐𝑜𝑛𝑡𝑒𝑥𝑡 =  [“𝐴𝑡 11: 00, 𝐵𝑟𝑦𝑎𝑛 𝑤𝑎𝑠 𝑚𝑜𝑠𝑡𝑙𝑦 𝑤𝑜𝑟𝑘. 𝑇ℎ𝑒 ℎ𝑒𝑎𝑟𝑡 𝑟𝑎𝑡𝑒 𝑟𝑎𝑛𝑔𝑒𝑑 𝑓𝑟𝑜𝑚 84 𝑡𝑜 88 𝑏𝑝𝑚,  
𝑤𝑖𝑡ℎ 𝑎𝑛 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 86 𝑏𝑝𝑚. 𝐸𝑙𝑒𝑣𝑎𝑡𝑒𝑑 ℎ𝑒𝑎𝑟𝑡 𝑟𝑎𝑡𝑒 𝑑𝑢𝑟𝑖𝑛𝑔  

𝑤𝑜𝑟𝑘 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑒𝑠 𝑠𝑡𝑟𝑒𝑠𝑠 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒, 𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝑛𝑜𝑟𝑚𝑎𝑙 𝑏𝑢𝑡  
𝑠ℎ𝑜𝑢𝑙𝑑 𝑏𝑒 𝑚𝑜𝑛𝑖𝑡𝑜𝑟𝑒𝑑. ”] 

 
 
Table 7. RAGAs evaluation scores for three prototypes (V1, V2, V3) using enhanced contexts, showing performance in 
context relevance, faithfulness, and answer relevance. 

Prototype Version 

with enhanced context 
Context Relevance Faithfulness Answer Relevance 

HR Assistant (V1) 0.7500 0.5000 0.5334 

HR Assistant (V2) 0.7500 0.8492 0.7331 

HR Assistant (V3) 0.7500 0.2000 0.7121 

 

 

The results in Table 7 indicate that the introduction of enhanced contexts resulted in a significant 

improvement in context relevance, which stabilized at 0.75 across all iterations. Faithfulness 

peaked in V2 (0.8492), indicating that enriched contextual cues enabled the assistant to generate 

answers more firmly grounded in the retrieved evidence; however, it dropped in V3 as the system 

integrated more complex inputs. Answer relevance also improved, reaching its highest value in V2 

(0.7331), before slightly decreasing in V3.  

 

Overall, these results confirm that enriching the original summaries with interpretive elements 

provided more effective retrieval support and improved alignment between system responses and 

user queries. 

 



 

 71 

However, the enhanced context evaluation also revealed a critical limitation in V3's design 

approach. While context relevance remained consistently high (0.7500) and answer relevance 

improved for V2 (0.7331), V3 experienced a significant drop in faithfulness to 0.2000 when 

evaluated with enhanced contexts. This counterintuitive result occurred because V3's sophisticated 

prompt engineering, designed for demographic awareness and comprehensive medical 

interpretations, generated responses that incorporated medical knowledge beyond what was 

explicitly stated in the retrieved contexts. 

 

Specifically, V3 responses included clinical interpretations ("cardiac issues," "dehydration in older 

adults"), external medical guidelines (European Society of Cardiology standards), and age-specific 

medical advice that, while medically appropriate and user-relevant, were not directly present in 

the enhanced context summaries. This highlights a fundamental tension in medical RAG systems 

between retrieval fidelity (faithfulness) and the integration of domain expertise (helpfulness). The 

RAGAs faithfulness metric strictly measures adherence to retrieved information, penalizing any 

additional knowledge incorporation regardless of its clinical validity or user benefit. 

 

This finding suggests that traditional RAG evaluation metrics may be insufficient for assessing 

medical conversational interfaces, where integrating domain expertise beyond retrieved data can 

be both necessary for user safety and clinically appropriate. The results suggest that V2 achieved 

an optimal balance between faithfulness and helpfulness, while V3's enhanced medical capabilities 

came at the cost of strict retrieval grounding, a trade-off that requires careful consideration in 

production medical AI systems where both accuracy and comprehensive care guidance are 

essential. 

 

7.2 Baseline Comparison Findings  
 
Building on the prototype evaluations, the top-performing iteration without enhanced context (V2) 

was selected as the reference for baseline comparison. This ensured consistency with the 

development of all iterations, which were initially evaluated using the same type of retrieved 

summaries. Table 8 shows the results of this comparison, while Figure 14 provides an example 

from the evaluation set, comparing the LLaMA 3.2 baseline and the RAG-enhanced responses to 

the same prompt. 
 

Table 8. Baseline comparison between the RAG-augmented assistant (V2 without enhanced context) and the plain LLaMA 
3.2 model without retrieval, evaluated on Factual Correctness (F1) and Answer Relevance. 

Model Faithfulness F1 score 

LLaMA 3.2 + RAG 0.3450 0.5063 

LLaMA 3.2 0.2365 0.2733 

 

 

The results in Table 6 show that the RAG-augmented assistant (Faithfulness: 0.3450, F1 score: 

0.5063) clearly outperformed the plain LLaMA 3.2 model without retrieval (Faithfulness: 0.2365, 

F1 score: 0.2733) across both evaluation dimensions. This improvement reflects the added value 

of integrating retrieved physiological summaries during the response generation process. While 
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the baseline relied solely on its pre-trained internal knowledge, the RAG pipeline grounded its 

answers in actual log data, enabling more accurate and context-sensitive responses. 

 

The faithfulness gain (+0.1085) suggests that retrieval not only provided factual anchor points but 

also guided the model to produce more verifiable claims. Meanwhile, the significantly higher F1 

score (+0.2330) demonstrates stronger alignment between the system’s responses and the expected 

ground truth. Together, these findings confirm that RAG architectures are particularly well-suited 

for domains like health data interpretation, where precision, traceability, and context grounding 

are critical, especially in systems designed for non-diagnostic yet interpretive guidance. 
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Figure 14. Example responses generated by a) the heart rate assistant 
with retrieval, and b) the baseline LLaMA 3.2 without retrieval. 
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Chapter 8 
Discussion 
 
8.1 Addressing Research Questions  

 
8.1.1 RQ1: Design of Conversational Interfaces for Understanding DT 
Systems  

 
The findings highlight that effective design of LLM-based conversational interfaces for Digital 

Twin systems depends on balancing contextual richness with interpretive clarity. Across iterations, 

technical results showed improvements in answer relevance, reflecting the benefits of retrieval-

augmented generation (RAG) and demographic-aware personalization. However, as seen in 

Iterations 2 and 3, broadening retrieval beyond a single chunk introduced trade-offs: while 

summaries of multi-hour or daily patterns enhanced interpretive value, they also increased 

verbosity and reduced faithfulness. Although enriching the retrieval context led to higher technical 

evaluation scores, particularly in context relevance, the assistant’s responses consistently provided 

sufficiently reliable and accurate information to support user understanding and interaction across 

all iterations. This illustrates that design choices about retrieval scope directly affect the quality of 

user-facing explanations. 

 

From the user perspective, several design features proved particularly valuable. Participants 

consistently emphasized that comparisons with age-based norms, contextual framing of alerts, and 

summaries of daily trends helped them better grasp their heart rate data. These interpretive 

elements moved the assistant beyond passive reporting toward active meaning-making, a role 

participants recognized as useful for tracking and reflection without perceiving it as a diagnostic 

substitute. The supportive and neutral tone was another critical factor, while technical precision 

varied, participants repeatedly highlighted that respectful, bounded communication fostered 

comfort and trust. 

 

Yet the findings also underscore persistent design limitations. Participants noted that the assistant 

often failed to sustain conversational continuity, treating follow-ups as isolated questions rather 

than linked turns. Verbosity remained a challenge across iterations, with some users finding long 

outputs distracting even when they contained relevant details. These results suggest that future 

designs should emphasize three interdependent principles: 

 

• Contextualization: references and comparisons that ground raw values in meaning. 

• Concise and conversational flow: Sustain interaction without overwhelming users. 

• Transparency of role boundaries: The assistant functions as an interpretive layer, not as 

a diagnostic authority. 

 

Together, these insights suggest that designing conversational interfaces for DT systems involves 

not only technical accuracy but also the framing and communication of meaning. Supporting 
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patient understanding requires careful calibration of retrieval scope, tone, and flow, so that 

interpretive richness does not come at the cost of clarity or trust. 

 

 
8.1.2 RQ2: Risks, Limitations, and Trust Factors of LLM -Based Interfaces 
in DT Systems  

 
The evaluation also surfaced several risks and limitations that directly influence how patients 

might trust and engage with such systems. On the technical side, the most evident risk was 

inconsistency in factual grounding. As retrieval expanded from one to multiple chunks, 

faithfulness scores decreased, showing that the assistant often failed to retrieve or reflect all 

retrieved details precisely. Although averages, ranges, and activity labels were usually correct, 

broader or longer contextual descriptions became less reliable. This demonstrates a fundamental 

consideration: the richer the context, the harder it becomes for the model to maintain strict fidelity, 

a limitation with significant implications in health contexts, where accuracy underpins trust. 

 

From the user perspective, two trust-sensitive issues emerged. First, privacy concerns were raised 

explicitly, with one participant stating that they would only use the system if personal data and 

conversations were not shared. This reflects the augmented sensitivity of conversational health 

data and the need for strict privacy safeguards in future implementations. Second, users noted 

occasional errors such as confusing beats per minute (bpm) values with time references or 

producing overly generic recommendations. Even when these errors were minor, they eroded 

confidence in the assistant’s reliability. 

 

At the same time, the study highlighted design features that reinforced trust despite technical 

shortcomings. Participants consistently valued the assistant’s supportive tone, neutral stance, and 

clear role boundaries. Unlike diagnostic tools, the assistant was seen as an aid for interpretation 

rather than a replacement for professional expertise, which increased trust by setting realistic 

expectations. When the system avoided speculation and stayed within its interpretive role, 

participants felt reassured about its safe use. 

 

Taken together, these findings show that sustaining trust requires addressing risks on two levels: 

 

• Technical safeguards: mitigating loss of faithfulness when retrieval scales up, and 

ensuring factual grounding is not diluted by verbosity. 

• User-centered safeguards: ensuring privacy, setting role boundaries, and maintaining a 

supportive but non-diagnostic tone. 

 

Thus, emphasizes that building trust in LLM-based conversational interfaces is not achieved solely 

by improving accuracy but by balancing technical reliability with ethical design choices that 

protect privacy, avoid overreach, and communicate clearly. 
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Chapter 9 
Conclusions 
 
9.1 Conclusion  
 
This thesis investigated how Large Language Model (LLM)-based conversational interfaces can 

function as interpretation layers in Digital Twin (DT) systems, with a focus on heart rate data. The 

goal was to design and iteratively refine a prototype assistant that supports patients to better 

understand their physiological information through contextual and trustworthy dialogue (Chapters 

4–6).  

 

The first research question (RQ1) asked how LLM-based conversational interfaces can facilitate 

patients’ comprehension and interaction with Digital Twin health data. The findings demonstrated 

that integrating retrieval-augmented generation (RAG) with demographic-aware personalization 

significantly improved the communication of heart data. Technical evaluations presented in 

Chapter 5 showed consistent gains in context relevance and answer relevance, confirming that 

retrieval pipelines align system responses more closely with user intent. The user studies discussed 

in Chapter 6 further revealed that participants valued contextualized alerts, age-based comparisons, 

and concise yet meaningful explanations, which supported reflection and self-monitoring. 

Importantly, the baseline comparison in Chapter 7 confirmed the added value of RAG, as retrieval-

enhanced responses outperformed the non-retrieval LLaMA 3.2 baseline, reinforcing the 

effectiveness of implementing RAG in this domain. Collectively, these results highlight that 

conversational interfaces can effectively bridge the gap between raw health data and patient 

understanding, provided that clarity, personalization, and transparency are prioritized. 

 

The second research question (RQ2) investigated the risks and limitations associated with such 

systems. Evidence from the prototype iterations in Chapter 5 and the evaluation findings in Chapter 

6 highlighted key trade-offs. Expanding the retrieval scope enhanced interpretive richness but 

reduced faithfulness, as responses could not consistently reproduce every retrieved detail. 

Participants also identified limitations, including verbosity, occasional inconsistencies, and 

restricted conversational memory. These issues underscore the need for carefully balancing 

interpretive depth, factual accuracy, and conversational fluency in future designs. 

 

By iteratively developing and testing three prototype versions, this work contributes both technical 

and human-centered insights into conversational DT interfaces. As outlined across Chapters 5 and 

6, the study advances understanding in three ways: (1) empirically demonstrating how retrieval-

based personalization improves alignment with patient intent, (2) surfacing design trade-offs that 

shape trust and engagement, and (3) identifying communication features that make health data 

interpretation more accessible and engaging. Beyond the case of heart rate interpretation, the 

implications extend more broadly: conversational layers can increase accessibility and 

comprehension of complex physiological data, but their value depends on embedding ethical 

safeguards, avoiding diagnostic claims, and ensuring sustainable trust. 
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In summary, this thesis contributes practical insights into the design of LLM-based interfaces, 

demonstrating their strong potential as interpretation layers in Digital Twin systems. Such 

interfaces can play a valuable role in bridging the gap between raw health data and patient 

understanding. Still, their effectiveness depends on carefully balancing precision and interpretive 

richness, personalization and consistency, and a supportive tone with factual accuracy, while 

continuously addressing the challenges of conversational flow and privacy. 
 
 
9.2 Limitations  
 
While this study demonstrated the potential of LLM-based conversational interfaces for 

interpreting Digital Twin data, several limitations constrain the scope and generalizability of its 

findings. 

 

- Prototype development limitations. A central limitation was the short time frame between 

prototype iterations. Although each version integrated improvements, the condensed 

schedule compromised the scope of refinements and limited the possibility of testing more 

experimental or ambitious design features. Another technical constraint was the choice of 

model. To ensure feasibility and privacy in local deployment, the assistant relied on the 

LLaMA3.2 (2.5 GB) model. While this approach supported offline experimentation 

without external dependencies, it inevitably restricted performance compared to larger-

scale LLMs, which, although slower and more energy-demanding, may have handled 

contextual integration more effectively. The prototype was also limited to heart rate data 

only, raising questions about its scalability to other physiological signals or multimodal 

Digital Twin inputs. 

 

- Hallucination prevention limitations. The system minimized hallucinations by grounding 

responses in retrieved log data and constraining prompts. Still, residual risks remained, 

especially with open-ended or emotionally framed queries that could trigger unsupported 

or diagnostic-sounding statements. To reduce this, the study restricted prompts to 

structured types (time-based questions, alert follow-ups, summaries). This improved 

factual grounding but reduced conversational freedom, reflecting a trade-off between 

safety and naturalness. 

 

- Evaluation metrics limitations. The evaluation was based on faithfulness, context 

relevance, and answer relevance, which captured core aspects of performance but only 

partially reflected user experience. Faithfulness was measured by alignment with retrieved 

logs; however, highly faithful answers could sometimes feel verbose or misaligned, while 

less faithful ones were sometimes valued for their clarity or empathy. In addition, semantic 

risks, such as subtle hallucinations, were not fully captured. Fabricated details, though 

minor, could erode trust, and current metrics often rewarded fluency even when factual 

reliability was compromised. Strict cross-model scoring also penalized contextually 

helpful responses; for example, answers including correct heart rate values were still rated 

as zero. This limitation became evident in Version 3, which, despite delivering more 

contextually appropriate responses through demographic awareness and clinical guidelines 

(e.g., European Society of Cardiology standards), achieved much lower faithfulness scores 
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(0.2000) compared to Version 2 (0.8492). While these enhancements improved answer 

relevance (0.7121) and user experience, they violated RAGAs’ strict requirement of 

adherence to retrieved context, highlighting that traditional RAG metrics may inadequately 

assess conversational health systems where domain expertise integration is both necessary 

and beneficial. 

 

- Design limitations. The study relied on simulated heart rate datasets rather than real-world 

patient data. While this ensured controlled experimentation, it reduced ecological validity. 

Real-world signals often include noise, irregularities, and individual variability, which 

could challenge the robustness of the system in practice. Furthermore, the prototype's lack 

of long-term memory constrained conversational continuity, preventing the assistant from 

sustaining dialogue across extended interactions and potentially weakening trust over time. 

 

- Participants. The user study participants were primarily recruited from research 

backgrounds and included colleagues from the company where the study was conducted. 

This shaped their expectations toward more factual and technically detailed explanations, 

which may not reflect the needs of broader patient groups. For instance, elderly users or 

those with lower technical literacy may prefer simpler, more accessible communication. 

As a result, the findings provide valuable but partial insights into usability and trust, and 

should be interpreted cautiously when generalizing to diverse user populations. 

 

 

9.3 Future Work  
 
Future work should prioritize extending the prototype to operate on real-world patient datasets. 

While simulated data enabled controlled experimentation, real signals contain noise, irregularities, 

and variability that are critical for testing robustness. Testing with real-world inputs would provide 

stronger evidence of ecological validity and expose challenges that controlled settings cannot 

capture. Beyond data, future studies should also involve larger and more diverse participant 

groups. Including users with diverse demographics, health conditions, and communication 

preferences would strengthen the generalizability of the findings and reveal how design features, 

such as tone, personalization, and explanation style, need to adapt for distinct populations, such as 

elderly or less technically oriented individuals. 

 

At the technical level, future work should address the balance between interpretive richness and 

factual precision. As shown by the baseline comparison and retrieval-augmented evaluations, 

broadening context improved relevance but made answers less precise, underscoring the need for 

adaptive strategies that dynamically adjust information scope depending on query type. For 

example, the assistant could provide broad summaries when users ask about daily patterns but 

focus on concise, detail-oriented answers when queries target specific hours. Exploring larger-

scale LLMs may also enhance contextual reasoning. Although such models would require longer 

runtimes, they could handle semantic integration more effectively. Future designs may also 

combine these models with privacy-preserving deployment methods, such as on-device 

optimization or carefully managed local–cloud combinations, to achieve both higher performance 

and responsible data handling. 
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Future research should also focus on advancing conversational continuity and personalization. 

Implementing long-term memory mechanisms would enable the assistant to sustain dialogue 

across sessions, supporting more natural and engaging interactions. Personalization could extend 

beyond demographic comparisons to incorporate individual health profiles and user preferences, 

ensuring explanations feel tailored, supportive, and trustworthy. 

 

Equally important is developing methods to handle open-ended and emotionally framed prompts 

more safely, without over-restricting user expression. This could include adaptive prompting 

strategies, real-time hallucination detection, or confidence-calibrated responses that acknowledge 

uncertainty. Such approaches would expand conversational flexibility while maintaining the 

safeguards against unsupported or diagnostic outputs. 

 

Improving evaluation approaches is another priority. Current metrics reveal key gaps: faithfulness 

does not always align with user trust, semantic risks remain undercaptured, and strict cross-model 

scoring penalizes clinically appropriate interpretations, as seen in Version 3’s low faithfulness 

score despite delivering more relevant guidance. This indicates that retrieval-focused metrics alone 

are insufficient for medical AI, where domain expertise beyond the retrieved data can be necessary 

and beneficial. Future frameworks should adopt hybrid approaches that combine automated 

scoring with human-centered assessments of trust, clarity, and usability, while integrating 

mechanisms to detect hallucinations and semantic inconsistencies more reliably. In parallel, 

ontology-based methods could strengthen consistency, interoperability, and contextual 

understanding in semantic retrieval, complementing vector similarity–based approaches. 

 

Finally, ethical and practical safeguards must remain central. Protecting sensitive health data 

requires robust privacy measures, while transparency about how responses are generated is key to 

sustaining confidence. Equally, it is essential to make the assistant’s role clear: it should function 

as an interpretive support tool, not a diagnostic authority. Ensuring that the system complements 

rather than replaces healthcare professionals will be critical for its responsible adoption. 
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Appendix A 
____________________________________________________________________________________ 

Study Phase: Exploratory 

Scenario A: System-Detected Abnormal Heart Rate 

Your Role 

You are Bryan, a 70-year-old man who occasionally receives heart rate updates from an 

assistant. You do not have a medical or technical background, but you’re curious and want to 

understand what’s going on in simple terms. 

Situation 

Today, the assistant sent you a message automatically because it noticed something unusual in 

your heart rate. When you open the assistant, this message is already there: 

"Hi Bryan, your heart rate stayed elevated during inactivity around 13:00 today." 

This is not an emergency; it is an alert meant to help you stay informed and reflect. 

 

Important Notes Before You Start 

• The assistant only has heart rate data between 08:00 AM and 4:00 PM. 

• It aims to explain things in simple, natural, and friendly language. 

• It will not provide a diagnosis or medical advice; it only describes what the data 

indicates. 

• Your task is to ask questions to better understand your heart rate data.  

 

Suggested Sequence of Questions  

1. What was my average heart rate during this abnormality detection?  

2. What activity was I doing?  

3. Why was it classified as an abnormal value?  

4. Did my heart rate improve around 14:30?  

5. I had coffee during lunch. Could that be related to the alarm? 
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Study Phase: Exploratory 

Scenario B: Normal Monitoring Query - Healthy 

Your Role 

You are Alessa, a 69-year-old woman who occasionally checks your heart rate to stay informed. 

You do not have medical or technical experience, and you prefer explanations that are short and 

easy to understand. 

Situation 

You decide to open the assistant to reflect on how you’re feeling today. You did not receive any 

alert from the system. 

When you log in, the assistant welcomes you with this message: 

"Your heart rate looks good today, but feel free to ask the assistant if you want to reflect on 

anything!" 

 

Important Notes Before You Start 

• The assistant only has heart rate data between 08:00 AM and 4:00 PM. 

• It aims to explain things in simple, natural, and friendly language. 

• It will not provide a diagnosis or medical advice; it only describes what the data 

indicates. 

• Your task is to ask questions to understand your heart rate data better.  

• There is no alert today, so you're free to explore how you’ve been feeling. 

 

Suggested Sequence of Questions  

1. What was my heart rate around 11:30? I felt dizzy 

2. How would you evaluate my health based on my recent heart rate data?  

3. I've been under a lot of stress at work lately. Would you say I have depression? 

4. Can you give me medical advice to treat my illness? 
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Study Phase: Main - Part 1 

Scenario A: System-Detected Abnormal Heart Rate 

Your Role 

You are Bryan, a 70-year-old man who occasionally receives heart rate updates from an 

assistant. You do not have a medical or technical background, but you’re curious and want to 

understand what’s going on in simple terms. 

Situation 

Today, the assistant sent you a message automatically because it noticed something unusual in 

your heart rate. When you open the assistant, this message is already there: 

" Hi Bryan, your heart rate was elevated around 13:00 today." 

This is not an emergency; it is an alert meant to help you stay informed and reflect. 

 

 Important Notes Before You Start 

• The assistant only has heart rate data between 08:00 AM and 4:00 PM. 

• It aims to explain heart rate data in simple, natural, and friendly language. 

• It will not provide a diagnosis or medical advice. 

• Your task is to ask questions to understand your heart rate data better.  

 

Suggested Sequence of Actions and Questions  

6. Press “What is this alert about” button 

7. I drank green tea during lunch. Could that be related to the heart rate increase? 

8. Tell me why my heart rate range was classified as abnormal around 13? 

9. What is the normal resting heart rate for elderly people? 

10. Did my heart rate get better? What about 14:30?  

11. Based on the alert at 13. Would you say I’ve heart disease?  

12. Can you provide medical advice? 
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Study Phase: Main - Part 1 

Scenario B: Normal Monitoring Query - Healthy 

Your Role 

You are Alessa, a 69-year-old woman who occasionally checks your heart rate to stay informed. 

You do not have medical or technical experience, and you prefer explanations that are short and 

easy to understand. 

Situation 

You decide to open the assistant to reflect on how you’re feeling today. You did not receive any 

alert from the system. 

When you log in, the assistant welcomes you with this message: 

"Your heart rate looks good today, but feel free to ask the assistant if you want to reflect on 

anything!" 

 

 Important Notes Before You Start 

• The assistant only has heart rate data between 08:00 AM and 4:00 PM. 

• It aims to explain heart rate data in simple, natural, and friendly language. 

• It will not provide a diagnosis or medical advice. 

• Your task is to ask questions to understand your heart rate data better.  

• There is no alert today, so you're free to explore how you’ve been feeling. 

 

Suggested Sequence of Questions  

5. How was my heart rate around 11:30? I was stressed at that time 

6. What can I do to decrease my stress levels? 

7. What was my heart rate and activity at 2 pm? 

8. How would you evaluate my health based on my recent heart rate data?  

9. What are ways to maintain a healthy heart rate? 

10. I've been under a lot of stress at work lately. Would you say I have depression? 

11. Would you say I am healthy? 
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Study Phase: Main - Part 2 

Scenario A: System-Detected Abnormal Heart Rate 

Situation 

You are Bryan, an 80-year-old man. You don’t have a medical or technical background, but 

you’re curious and want to understand what’s going on in simple terms. 

Today, the assistant sent you a message because something unusual was detected in your heart 

rate: 

" Hi Bryan, your heart rate was elevated around 13:00 today." 

 

You’d like to know more about this alert and whether there were any other notable increases 

during the day. 

 

 

Important Notes Before You Start 

• The assistant only has heart rate data between 08:00 AM and 4:00 PM. 

 

Sequence of Questions to Follow 

Before starting to ask, press “What is this alert about” to get a general summary. 

13. What steps should I take on this? 

14. Tell me why my heart rate range was classified as abnormal 

15. Were there any other increases today? 

16. Did my heart rate return to normal after the alert?  

17. What are the resting heart rate values for elderly people? 

18. Do I have heart disease? 
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Study Phase: Main - Part 2 

Scenario B: Normal Monitoring Query - Healthy 

 

Situation  

You are Alessa, a 69-year-old woman who uses the heart rate assistant to review your daily 

activity. Today, you didn’t get any alerts, but you want to check how your heart rate has been 

during the measured hours, just for reassurance. You don’t have a medical or technical 

background, and you prefer clear, simple explanations. 

 

 

Important Notes Before You Start 

• The assistant only has heart rate data between 08:00 AM and 4:00 PM. 

 

 

Sequence of Questions to Follow 

1. What was my average heart rate and activity at 2 pm?  

2. Are those values typical for a person of my age? 

3. Can you give me a summary of my heart rate and activities today?  

4. I was stressed in the morning. Did my heart rate reflect that? 

5. What can I do to decrease my stress levels? 

6. Was there any time today when my heart rate was close to my limits?  

7. What do you recommend for a person like me to stay healthy? 
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Appendix B 
____________________________________________________________________________________ 
Semi-Structured Interview Guide  

  

1. How clear and understandable were the assistant’s responses today?  

2. Did the assistant’s tone feel appropriate and supportive during the interaction?  

3. Was there anything you found confusing, surprising, or hard to trust?  

4. Did you feel like the assistant helped you make sense of the heart rate 

information?  

5. Were the assistant’s replies too detailed, too vague, or just right?  

6. Was there any part where you expected a different response?  

7. What improvements or features would make this system more useful to you?  

8. Did you feel that the assistant behaved consistently with its intended role (not 

acting as a medical professional)?  

9. How did you feel during the interaction with the assistant? Can you describe any 

moments that made you feel particularly supported or uncertain?  

10. Is there anything else you’d like to share about your experience with the assistant, 

the system interface, or the study overall?  
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Appendix C 
____________________________________________________________________________________ 

Post-Study Questionnaire 

 

Likert Scale (1 = Strongly Disagree, 5 = Strongly Agree) 

1. The assistant’s responses were clear and easy to understand. 

2. The assistant’s tone felt supportive and respectful. 

3. I would feel confident using this assistant to understand my heart rate. 

4. The assistant’s replies helped me reflect on my health data without confusion. 

5. The overall interaction felt natural and realistic. 

6. Across the sessions, I noticed improvements in the assistant’s communication. 

7. I could identify changes in the assistant’s behaviour that responded to my previous 

feedback. 

8. The assistant clearly avoided offering diagnoses or treatment advice, which made me feel 

safe using it. 

 

Open-Questions 

9. What were the most helpful aspects of the assistant’s communication? 

10. What could be improved to make the assistant more helpful?  

11. Would you feel comfortable using this system independently in the future? Why or why 

not?  

12. Can you describe any improvements you noticed over the course of the sessions?  

13. How did those changes affect your experience or trust in the assistant?  

14. Any final thoughts about your experience using this prototype? 
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Appendix D 
____________________________________________________________________________________ 
 
Consent Form Subject  
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Appendix E  
____________________________________________________________________________________ 
 
AI usage disclaimer 
 

This thesis was created with the assistance of AI-based tools. GPT assisted with tasks such as 

restructuring text, enhancing readability, and providing content suggestions. GitHub Copilot was 

used to clean up and recommend coding structures in Python. TurboScribe was solely used to 

transcribe audio files into text. These tools were strictly used as aids to enhance clarity, efficiency, 

and documentation. All research design, data analysis, interpretations, and conclusions are entirely 

the author’s own work. Responsibility for the accuracy, argumentation, and final wording lies 

entirely with the author. 
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Appendix F  
____________________________________________________________________________________ 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 35. Example of the generation process for a summary query, showing how all 
retrieved daily chunks, system instructions, and the user’s question are constructed and 
passed to the LLM to generate a full-day overview response. 
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Figure 16. Example of the generation process for an alert follow-up query, showing how the context segment 
that triggered the alert, system instructions, and the user’s question are constructed and passed to the LLM 
to generate a transparent explanation of the abnormality. 
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Figure 17. Example of the generation process for a general time-based query, showing how the most relevant hourly 
chunks, system instructions, and the user’s question are constructed and passed to the LLM to generate a contextualized 
response. 
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Figure 18. Example of the generation process for a general wellness query or reflection, showing how the user question is 
combined with the instructions (without context) and passed to the LLM to generate a concise, non-clinical wellness 
response. 
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Appendix G  
____________________________________________________________________________________ 
Specific Time-Based Questions  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 49. Example of user queries containing explicit time references with 
corresponding system responses based on the hourly log summaries. 
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General Time-Based Questions  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 50. Example of user queries referring to relative time periods and the assistant’s 
contextualized summaries of heart rate data. 
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Summary Questions  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21. Example of a user requesting a complete overview of daily activity and heart rate patterns, with 
the system generating a tabular summary and observations. 
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 Alert Follow-Up Questions  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 22. Example of user queries following a system-generated alert, where the 
assistant reuses the relevant log segment and provides explanatory context. 
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General health and wellness reflections  
 
 

 

 

 

 

 

 

 

  

Figure 23. Example of wellness-oriented queries not anchored to specific retrieved 
context, where the assistant provides supportive, non-diagnostic information. 
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Appendix H  
 

Evaluation Dataset for Prototype Iteration 1  

questions = [ 

   "Tell me why my heart rate range was classified as abnormal around 13?", 

    "How was my heart rate around 11:30? I was stressed at that time", 

    "Did my heart rate return to normal after the alert?" 

       ] 

 

answers = [ 

    # Q1 

"According to our log, at 13:00, your heart rate ranged from 82 to 116 bpm, with an average of 92 bpm. 

Generally, a heart rate range of 60-100 bpm is considered normal for adults during periods of rest or light 

activity. However, a range of 82-116 bpm might be considered slightly elevated", 

    # Q2 

"I can sense that you were feeling stressed at 11:30. That's totally normal! According to your log, your heart 

rate ranged from 84 to 88 bpm during that time. On average, it was 86 bpm.", 

    # Q3 

 "According to the logs, during the period when the alert was triggered, your heart rate ranged from 82 to 

116 bpm, with an average of 92 bpm. Unfortunately, there is no information available about what happened 

immediately after the alert or whether your heart rate returned to normal afterwards." 

     ] 

 

contexts = [ 

    # Q1 (1 chunk) 

    ["At 13:00, Bryan was mostly meal. The heart rate ranged from 82 to 116 bpm, with an average of 92 

bpm."], 

 

    # Q2 (1 chunk) 

    ["At 11:00, Bryan was mostly work. The heart rate ranged from 84 to 88 bpm, with an average of 86 

bpm."], 

 

    # Q3 (1 chunk) 

    ["At 13:00, Bryan was mostly meal. The heart rate ranged from 82 to 116 bpm, with an average of 92 

bpm."] 

     ] 

 

references = [ 

    "Heart rate above 100 bpm during inactivity", 

    "Heart rate from 84 to 88 bpm average of 86 bpm", 

    "14:00 (hr avg 85 bpm) leisure; 15:00 (hr avg 86) leisure." 

        ] 
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Evaluation Dataset for Prototype Iteration 2  
 

questions = [ 

    "Tell me why my heart rate range was classified as abnormal around 13?", 

    "How was my heart rate around 11:30? I was stressed at that time", 

    "Did my heart rate return to normal after the alert?" 

       ] 

 

answers = [ 

    # Q1 

"It seems that your heart rate range during the 13:00 activity was quite a bit higher than usual. Specifically, 

it ranged from 82 to 116 beats per minute (bpm), with an average of 92 bpm. In general, a normal heart rate 

for adults at rest is typically considered to be between 60-100 bpm.", 

    # Q2 

 "Around 11:30, your heart rate remained relatively stable, ranging from 84 to 88 beats per minute (bpm). 

The average heart rate for this period was 86 bpm. Considering you mentioned feeling stressed at that time, 

it's not surprising that your heart rate stayed steady, as stress often causes a stable or slightly elevated heart 

rate.", 

    # Q3 

"According to the log, at 13:00, your heart rate was mostly in the range of 82-116 bpm, with an average of 

92 bpm. The system alert about abnormal heart rate is mentioned, but no further information about what 

happened before or after that time is available." 

     ] 

 

contexts = [ 

    # Q1 (1 chunk) 

    ["At 13:00, Bryan was mostly meal. The heart rate ranged from 82 to 116 bpm, with an average of 92 

bpm."], 

 

    # Q2 (1 chunk) 

    ["At 11:00, Bryan was mostly work. The heart rate ranged from 84 to 88 bpm, with an average of 86 

bpm."], 

 

    # Q3 (1 chunk) 

    ["At 13:00, Bryan was mostly meal. The heart rate ranged from 82 to 116 bpm, with an average of 92 

bpm."] 

      ] 

 

references = [ 

    "Heart rate above 100 bpm during inactivity", 

    "Heart rate from 84 to 88 bpm average of 86 bpm", 

    "14:00 (hr avg 85 bpm) leisure; 15:00 (hr avg 86) leisure." 

        ] 
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Evaluation Dataset for Prototype Iteration 3  
 

questions = [ 

    "Tell me why my heart rate range was classified as abnormal around 13?", 

    "How was my heart rate around 11:30? I was stressed at that time", 

    "Did my heart rate return to normal after the alert?" 

       ] 

 

answers = [ 

    # Q1 

"At 13:00, a heart rate reading of 116 bpm was flagged as abnormal due to being above the normal range 

of 60-100 bpm. Given your age, this is concerning because an elevated heart rate during meals can be 

indicative of cardiac issues or dehydration in older adults. In particular, a significant spike in heart rate 

during mealtime suggests potential dehydration or low blood volume, which may require medical 

attention.", 

    # Q2 

    "At 11:30, your heart rate was mostly stable while working. The readings ranged from 84 to 88 bpm, 

with an average of 86 bpm. Given your age (80) and activity level at that time, your heart rate is within a 

healthy range according to European Society of Cardiology guidelines (60-100 bpm)", 

    # Q3 

    "Yes, your heart rate returned to normal after the alert at 13:00. Alert at 13:00: 92 bpm (out of range) 

Afternoon readings: At 14:00: 85 bpm At 15:00: 86 bpm (within normal range)" 

    ] 

 

contexts = [ 

    # Q1 (1 chunk) 

    ["At 13:00, Bryan was mostly meal. The heart rate ranged from 82 to 116 bpm, with an average of 92 

bpm."], 

    # Q2 (1 chunk) 

["At 11:00, Bryan was mostly work. The heart rate ranged from 84 to 88 bpm, with an average of 86 bpm."], 

    # Q3 (3 chunks) 

["At 13:00, Bryan was mostly meal. The heart rate ranged from 82 to 116 bpm, with an average of 92 

bpm."], 

["At 14:00, Bryan was mostly leisure. The heart rate ranged from 83 to 87 bpm, with an average of 85 

bpm."], 

["At 15:00, Bryan was mostly leisure. The heart rate ranged from 84 to 87 bpm, with an average of 86 

bpm."] 

      ] 

 

references = [ 

    "Heart rate above 100 bpm during inactivity", 

    "Heart rate from 84 to 88 bpm average of 86 bpm", 

    "14:00 (hr avg 85 bpm) leisure; 15:00 (hr avg 86) leisure." 

        ] 
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Evaluation Dataset – Enhanced Context  
 
enhanced_contexts = [ 

 

    # Q1: Include WHY logic 

    ["At 13:00, Bryan was mostly meal. The heart rate ranged from 82 to 116 bpm, with an average of 92 

bpm. Heart rates above 100 bpm during rest/meal times are classified as abnormal for adults."], 

     

    # Q2: Include stress context 

    ["At 11:00, Bryan was mostly work. The heart rate ranged from 84 to 88 bpm, with an average of 86 

bpm. Elevated heart rate during work indicates stress response, which is normal but should be monitored."], 

     

    # Q3: Include alert context and normal definition 

    [ 

        "Alert triggered at 13:00 when heart rate reached 116 bpm (above normal 60-100 range).", 

        "At 14:00, Bryan was mostly leisure. The heart rate ranged from 83 to 87 bpm, with an average of 85 

bpm.", 

        "At 15:00, Bryan was mostly leisure. The heart rate ranged from 84 to 87 bpm, with an average of 86 

bpm.", 

        "Heart rate returned to normal range (60-100 bpm) after the alert." 

    ] 

 

     ] 
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Appendix I  
____________________________________________________________________________________ 
Exploratory and Evaluation Phases Findings  - Examples  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24. Examples of issues identified by participants when interacting with the prototype. The left screenshot shows interaction 
during the Exploratory Phase (V1), while the right screenshot displays interaction during the Evaluation Phase (V2). 
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