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Abstract

Digital Twin (DT) systems offer promising opportunities in healthcare by enabling continuous
monitoring and personalized analysis of physiological data. Yet, for patients, the outputs of these
systems often remain difficult to interpret due to technical complexity, lack of contextualization,
and limited transparency. This lack of interpretability can undermine patient engagement, trust,
and ultimately the effectiveness of DT systems in supporting self-management and communication
with care providers.

This thesis explores how Large Language Model (LLM)-based conversational interfaces can
function as interpretation layers within DT architectures, translating structured physiological data
into understandable, patient-facing insights. Focusing on heart rate as a representative signal, we
investigate how Retrieval-Augmented Generation (RAG) techniques can enhance the clarity,
contextual relevance, and trustworthiness of responses in patient-facing interactions. To do so, we
developed a local prototype that combines rule-based heart rate categorization with a retrieval-
enabled LLM (LLaMA 3.2), operating on simulated datasets to preserve privacy. The system
generates contextual, comprehensible answers without offering clinical advice, using hourly
summaries of heart rate logs as input.

A mixed-methods evaluation involving nine participants was conducted to assess both technical
performance and user experience. Technical accuracy was measured using RAGAs metrics,
including faithfulness, answer relevance, and context recall, while user experience was evaluated
through semi-structured interviews and standardized usability questionnaires. Results indicate that
the system produced relevant, understandable, and empathetic responses, helping participants
identify trends in their simulated heart data. However, broader queries led to decreased response
consistency, and the use of simulated rather than real patient data limited the generalizability of
findings.

The main contribution of this thesis lies in embedding RAG within a DT framework to enable
interpretable patient communication of heart rate data. This approach addresses key challenges in
hallucination reduction and contextualization, providing a foundation for future systems that aim
to translate complex physiological signals, starting with heart rate, into accessible and trustworthy
explanations for end users.
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Chapter 1
Introduction

1.1 Introduction

Digital twin technology has evolved since its initial conceptualization and has numerous
applications across various industries, including construction, energy, transportation, smart cities,
agriculture, education, and healthcare. The term digital twin (DT) is defined as a digital copy of a
physical system, ideally designed to exchange data bi-directionally in real-time between the virtual
and physical components [1, 5]. Originating in the 1990s as a conceptual framework to model real-
world systems, the DT paradigm gained traction with Michael Grieves' refinement in 2002 for
Product Lifecycle Management [1, 2]. It was later formalized by NASA in 2010 for use in real-
time simulation and monitoring of aerospace systems [3].

A digital twin comprises three main components: the physical system, its virtual representation,
and the connection between them that ensures a dynamic, real-time data flow. An essential
characteristic of a DT that makes it relevant in the industry is its capacity to collect and process
data, as well as its flexibility and accuracy, since this information helps simulate the status of the
physical twin. This effective integration enables the prediction of its performance, preventing
unexpected issues and increasing safety and reliability by optimizing its current and future
behavior [1, 4, 7].

Gradually, the concept of DT was also adopted in the healthcare domain, where it may represent
either hospital infrastructure or an individual patient [5, 6]. While infrastructure-based DT aids in
resource allocation and hospital management, patient-specific DTs are more complex and hold the
potential to revolutionize personalized medicine. In this context, and to avoid the unique
challenges that simulating a human being introduces, the concept of the Digital Human Twin
(DHT) has emerged. Aiming to create a virtual counterpart of physiological processes by
aggregating real-time and historical health data to simulate a patient's future health state, DTs offer
insights for disease prevention, diagnosis, or personalized treatment planning [7, 8]. Depending on
the application, these insights may be intended for healthcare professionals, patients, or both.

A Digital Twin in the healthcare domain can produce various outputs related to its objectives, such
as prediction, simulation, monitoring, visualization, or the generation of synthetic patient data [5].
Despite these advancements, a persistent barrier remains. Patients often receive raw health data
outputs with minimal contextual explanation [9, 53]. Without a clinical background, these outputs
can be overwhelming. This leads to a struggle to interpret physiological data and derive meaningful
personal insights, which can limit their ability to understand their health status or take appropriate
action [9]. Tackling this challenge requires new interaction strategies to prioritize clarity, empathy,
and usability in the communication of health data. A promising solution is the use of Al techniques
through Conversational Agents, which may enhance patient communication with Digital Twin
data, creating a more natural and user-friendly experience [10].



Recent research highlights a promising direction for improving healthcare communication through
the integration of conversational interfaces powered by LLMs [10, 11, 13]. These models, trained
on enormous amounts of text, can generate natural-sounding responses and simulate human-like
dialogue. When embedded within health systems, LLMs have the potential to help patients better
understand complex physiological information by presenting it in a more natural, accessible, and
context-aware manner [10,11].

Several recent studies demonstrate the practical potential of LLMs in health-related applications.
PhysioLLM [9], for example, is an interactive system that combines wearable physiological data
with contextual information to generate personalized health insights and support users in setting
actionable wellness goals. In a user study, it outperformed generic LLM chatbots in helping
participants interpret their data, particularly in improving sleep quality [9]. Similarly, OpenCHA
is an open-source framework designed for the analysis of physiological time series. It integrates
user interaction, data sources, and analytical tools to generate accurate health insights. In a
benchmark study, it successfully estimated heart rate from PPG signals and outperformed baseline
models when validated against ECG data [13]. While these systems focus on real-time monitoring
and analytical precision, this thesis introduces a contrasting approach: a design-oriented prototype
that simulates a conversational interpretation layer (a dialogue-based system that transforms
structured physiological data into natural language responses tailored for end users) for heart rate
data within a Digital Twin system, using offline, static datasets strictly for research purposes. This
setup does not accurately reflect how the system would operate in real clinical contexts, where
continuous, real-time physiological inputs are required.

Despite the promise shown by such systems, integrating LLMs into sensitive domains, such as
healthcare, also raises several critical design and ethical concerns. Key challenges include ensuring
response accuracy, maintaining interpretability, protecting data privacy, minimizing bias, and
preventing hallucination answers that sound credible but are incorrect [9, 12, 13]. These risks
underscore the importance of careful system design, particularly in patient-facing applications
where clarity, trust, and emotional sensitivity are essential.

This thesis investigates how conversational interfaces powered by Large Language Models
(LLMs) can support patients in interpreting heart rate data within a Digital Twin context. The aim
is to design and evaluate a prototype that serves as a bridge between complex physiological data
and patient-friendly communication, translating structured outputs into clear, empathetic dialogue,
which was measured in terms of emotional tone and perceived appropriateness from the users’
perspective. The system employs an Al prompt-based strategy, refined through rule-based inputs
and pre-evaluated using NLP metrics, to ensure clarity and prevent hallucinations. The project
adopts a user-centered, design-oriented approach, combining internal testing with exploratory user
evaluation to assess how such systems influence understanding, trust, and engagement, with
particular attention to the clarity, usefulness, and emotional tone of the interaction in a healthcare
setting.



1.2 Research questions
To guide the investigation, the following research questions are addressed:

e RQ1: How should LLM-based conversational interfaces be designed to improve patients’
understanding and interaction with heart rate data from Digital Twin systems?

e RQ2: What are the risks and limitations of using LLM-based conversational interfaces in
Digital Twin systems, and how do these affect patients’ trust and engagement with their
health data?

1.3 Report outline

Chapter 2 provides the theoretical and conceptual foundation of the study. It reviews the literature
on Digital Twin systems in healthcare, Large Language Models (LLMs), and conversational
interfaces, while also addressing technical, ethical, and design-related considerations in patient-
facing health technologies. It introduces the core principles of Retrieval-Augmented Generation
(RAGQG), its role and challenges in healthcare, and also reviews RAGAs as evaluation metrics to
assess groundedness, relevance, and faithfulness in responses. Chapter 3 presents related work,
focusing on previous implementations of LLM-based conversational assistants in healthcare and
applications of Retrieval-Augmented Generation (RAG) for LLMs in healthcare. Chapter 4
describes the methodology, detailing the conceptual framework of the system, the experimental
design, and the evaluation strategy adopted for both technical and user-centered perspectives.

Chapter 5 introduces the prototype development, including the system architecture, datasets, data
analysis, summary generation, and the implementation of the interpretation layer. It also presents
the technical evaluation with NLP-based performance metrics. Chapter 6 outlines the user study,
including participant characteristics, study phases, task scenarios, data handling, ethical
considerations, and study procedures. It reports both qualitative and quantitative findings,
integrating thematic analysis, questionnaire results, and open-ended responses to assess the clarity,
usefulness, and emotional tone of the system. Quantitative user perceptions are assessed using
custom questionnaires informed by Chatbot Usability Questionnaire (CUQ) [14] and the Bot
Usability Scale (BUS) [15]. These instruments served as a foundation for constructing tailored
questions aligned with the study's design goals.

Chapter 7 discusses the results concerning the research questions. It first interprets the system’s
iterative development across three prototype versions and then relates the findings to the research
questions. The final Chapter 8 concludes the thesis with reflections. It summarizes the main
contributions, acknowledges challenges and limitations, and outlines directions for future work on
conversational health interfaces within Digital Twin systems.
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Chapter 2
Research Background

2.1 Digital Twins in healthcare
2.1.1 Introduction to Digital Twins

The conceptual idea of Digital Twins (DTs) emerged around the 1990s, when David Gelernter
introduced the concept of Mirror Worlds, virtual environments designed to reflect real-world
systems using data from the physical world [1]. About a decade later, in 2002, Michael Grieves
expanded on this by proposing the Mirrored Spaces Model within the context of Product Lifecycle
Management (PLM), aiming to enhance how products are designed, tested, and managed
throughout their lifecycle [2]. However, it was not until 2010 that the actual term “Digital Twin”
was published and implemented for the first time by NASA's roadmap, where they used it to
describe a powerful way to monitor and predict the status of an aircraft, like tracking wear and tear
or forecasting failures [3]. Since then, DTs have expanded, transforming different industries,
especially healthcare, where they aim to model and monitor individual patients in real time [5].

A Digital Twin (DT) is the digital representation of a physical system, object, or process,
maintaining bidirectional and continuous real-time communication [1,5]. Unlike a static digital
replica, a Digital Twin is a dynamic representation that evolves by continuously gathering real-
time data from its physical counterpart. Its unique capability to bridge the gap between physical
and digital domains is enhanced by technologies such as Al, data analytics, and sensor data. This
integration allows the DT to simulate the system’s current state and predict future scenarios,
including potential defects or unexpected issues, enabling better decision-making in multiple
fields of application. Building on this foundation, recent advancements and integration of
technologies like Generative Artificial Intelligence, Cognitive Computing (CC), the Internet of
Things (IoT), and sensors have paved the way for usage of DTs in diverse areas such as aerospace,
energy, agriculture, education, construction, environmental and urban planning, and healthcare
field [4, 6-8, 14].

2.1.2 Digital Twins in Healthcare

Throughout the evolution of digital technology, the concept of Digital Twins (DTs) has expanded
in scope and application. In healthcare, this broad definition can sometimes lead to confusion if
not specified, as DTs may refer to the modeling of either an entire hospital system or infrastructure,
or an individual patient’s system. This flexibility in application has enabled a wide range of
opportunities across the healthcare sector. DTs are increasingly being explored in silico clinical
trial design, medical device development, drug discovery, treatment optimization, care
coordination, and surgical planning, demonstrating their potential to support both organizational
and patient interventions [5, 6]. However, the broad range of use cases and definitions has led to
ambiguity around what constitutes a Digital Twin, particularly in healthcare. To reduce this
ambiguity, the term Digital Human Twin (DHT) has emerged as a more precise concept within the

11



field, emphasizing the ability to replicate living physical entities. While the term suggests a
complete digital replica of a human, in practice, DHTs are limited by the complexity of
representing the human body as an integrated biological system, as well as by current technological
constraints. Rather than attempting to simulate an entire person, DHTs typically model specific
organs, physiological functions, or disease-related processes, offering predictive insights and
supporting clinical decision-making in a targeted way [5].

2.1.3 Structure of Digital Twins

To build a reliable and accurate Digital Human Twin (DHT), it is essential to integrate multiple
technologies and access extensive, high-quality healthcare data. These data include genetic
information, electronic health records, medical imaging, multi-omics data, real-time vital signs,
and lifestyle behaviors collected from various sources such as hospitals, wearable devices, mobile
health applications, and innovative environments [15-17].

Figure 1 illustrates a general Digital Twin system in the healthcare context, where the physical
entity corresponds to a patient’s system, and the virtual entity integrates physiological and
contextual data to enable personalized insights and interaction.

T
Pog e
g 74
Digital Twin Physical Digital Twin
Aggregation Entity Environment

9| i 4

Virtual
Entity

Figure 1. Structure of a Digital Twin system in healthcare, consisting of a physical entity, a
virtual entity, and data flows enabling real-time communication. From K. Zhang et al. [6].

DHTs are typically constructed using a modular architecture, where different physiological or
biological components are represented as separate, interoperable units. This modularity supports
scalability, system flexibility, and continuous updates without disrupting the overall structure
[18,19]. To ensure that the diverse datasets can be effectively interpreted and used across modules,
they must be standardized and harmonized. This is often accomplished by developing structured
ontologies that align formats and terminologies across various data sources, ensuring consistency
and interoperability throughout the system [7].

Once collected, the data are transmitted through local networks or mobile devices to cloud-based
platforms where they are securely stored and processed. The data are then analyzed using advanced
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Al techniques, such as deep learning [7]. These Al-powered systems enhance the DHT’s ability to
simulate complex physiological states and enable predictive decision-making support, including
early diagnosis, risk detection, and personalized treatment planning [20, 21]. Finally, security and
privacy are critical components in the development of DHTs. Hence, ideally, multi-layered
protection mechanisms are implemented to safeguard sensitive health data while maintaining
system performance and regulatory compliance [19].

2.1.4 Applications of Digital Twins in Healthcare

One of the key promises of Digital Health Technologies (DHTs), including Digital Twins, lies in
their ability to enable precision medicine: a healthcare strategy focused on tailoring treatments and
preventive measures to individual biological, genetic, and psychosocial characteristics. Among
these technologies, Digital Twins (DTs) have emerged as a compelling and representative
approach. While DTs are part of the broader category of DHTs, this report will refer to them simply
as Digital Twins (DTs) for clarity and consistency. By moving away from standardized care, it
aims to deliver more effective and timely interventions for each patient. For instance, DHTs can
generate personalized risk profiles for chronic conditions, provide lifestyle recommendations,
warnings about acute health threats, and prompt timely diagnostics [6—8].

In practice, Digital Twins are being explored for a variety of patient-centered applications,
including early diagnostics, chronic disease prevention, personalized therapy planning, medical
device development, care coordination, and surgical optimization [5, 6]. These DT-based diagnosis
and treatment systems aim to bridge existing gaps in care through Al-driven models that support
more precise and individualized interventions [8]. Already, some DTs are being deployed across
clinical domains to support data-driven decision-making, particularly in patient care.

= Cardiovascular Medicine: Modeling of the heart to enable non-invasive diagnosis and
the identification of optimal treatment strategies. Cardiovascular Medicine: Modeling of
the heart to allow non-invasive diagnosis and the identification of optimal treatment
strategies. For example, DTs have been used to simulate heart mechanics and predict
patient outcomes in cardiac resynchronization therapy [7, 8, 17, 21].

= Surgery: Patient-specific anatomical models support pre-operative planning and help
surgical teams avoid accidental damage to critical structures. DTs in this application have
been used to simulate aneurysms for implant sizing, predict post-operative complications
such as portal hypertension, and assist in planning interventions to reduce surgical risks
and improve recovery outcomes [7, 8, 21].

= Pharmacy: DTs simulate organ—drug interactions and accelerate drug development by
predicting biochemical reactions and optimizing formulations. One application includes
digital heart models used to assess drug safety and personalize dosing during
pharmaceutical testing. Additionally, DTs have been applied to improve pharmaceutical
manufacturing efficiency by integrating loT and Al technologies for better scalability and
automation. [7, 8, 17, 21].

13



= Orthopaedics: Wearable sensors and simulation systems enable real-time monitoring
biomechanical properties and motion of the human body. DTs have been applied in spine
modeling to support posture simulations and rehabilitation planning using kinematic
analysis and real-time biomechanical modeling [8, 21].

= Oncology: Personalization of cancer treatment. By creating patient-specific models, DTs
enable the simulation of disease progression and therapeutic responses, supporting more
informed and individualized decision-making in oncology care. For instance, they have
been used to simulate drug response variability in lymphoma or to support targeted cancer
treatment planning. [7, 17].

= Chronic Disease Management: DTs integrated with [oT technologies enable continuous
monitoring of vital signs to support individualized treatment strategies. By providing real-
time data and dynamic feedback loops, it is possible to adjust care plans, improving the
health outcomes of patients with long-term conditions. Applications include glucose level
tracking and adaptive insulin pump modeling in diabetes care, demonstrating personalized
control of glycemic states. [7, 17].

= Other applications: Technology extends beyond traditional clinical domains, offering
flexible solutions across many areas of healthcare. These applications often aim to improve
health outcomes, support personalized decisions, and enhance system efficiency. Whether
helping with individual planning, understanding behaviors, or improving healthcare
processes, Digital Twins are opening up new possibilities across the field. Some examples
are improving vaccination logistics, supporting personalized nutrition and lifestyle
planning, and enhancing dental care through 3D modeling for orthodontic treatment. [8,
17, 21].

2.1.5 Patients’ Digital Health Data Interpretation

While Digital Twins show great promise in advancing personalized care, the data they generate is
often complex for patients to interpret. Variability in biology, behavior, and environment adds
complexity, and although Al and wearable technologies offer support, much of the information
remains inaccessible without clinical context [6].

This complexity in physiological signals is exemplified by those derived from
photoplethysmography (PPG) and electrocardiography (ECG). PPG estimates heart rate by
detecting changes in blood volume, while ECG derives it from the electrical signals of cardiac
cycles, typically by identifying R-wave peaks within the QRS complex [19, 48]. These
complementary modalities provide high-resolution and clinically robust measures of heart rate,
which are widely applied in the detection of cardiovascular abnormalities such as bradycardia and
tachycardia [48]. Yet, despite their diagnostic value, the raw data they produce can be complex for
non-clinical users to interpret without contextualization, thresholds, or personalized framing.

Nowadays, patients have access to physiological data, such as heart rate, activity levels, and sleep
patterns, through digital health platforms and wearable devices. While this data can raise
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awareness and support healthier habits, unclear reference ranges and unfamiliar terminology often
contribute to confusion, making it difficult for users to interpret the information in context or
translate it into meaningful, personalized actions. Current interfaces typically offer limited
interactivity, generic feedback, and minimal personalization, factors that hinder real-time
understanding, combined with health literacy gaps and poor design [6, 9, 22, 23].

These challenges highlight the growing need for more intuitive, patient-centered solutions,
particularly systems that can translate complex health data into clear, natural conversational
guidance. In this context, Al-powered tools are emerging as promising supports to help patients
interpret and manage their health. Conversational systems, in particular, can now engage in open-
ended dialogue and provide relevant, contextual information more naturally and engagingly [13],
offering an opportunity to overcome the limitations of current static interfaces and better align with
users’ needs and expectations.

2.2 Conversational Interfaces in Healthcare

Many developed Al-driven tools have helped patients understand their health data more easily.
Web-based platforms now offer user-friendly features like age-specific centile curves and z-scores
to improve contextualization, particularly in pediatric care [22]. Wearables and digital systems
enable automated monitoring and trigger alerts for abnormal results, while machine learning
models support classifying health states. However, these tools often fall short in translating clinical
findings into patient-friendly, actionable insights [24-26]. In overloaded healthcare systems, where
professionals may not always be available to answer patients’ questions, the rise of telemedicine
and remote care has accelerated the adoption of Al-driven tools to ensure consistent, high-quality
communication across diverse care settings [27]. Among these emerging approaches,
conversational interfaces, particularly those powered by Al, have shown unique potential to bridge
this gap by providing tailored, real-time explanations through natural dialogue [9, 13, 28, 43-45].

Conversational interfaces, often called conversational agents (CAs) or chatbots, are increasingly
integrated into healthcare as part of the broader adoption of Al technologies. By delivering timely,
tailored responses based on individual patient input, they enhance the relevance and clarity of
health communication. These designed systems simulate natural, human-like dialogue and support
patients through various tasks, including accessing medical information, booking appointments,
triaging symptoms, and even offering emotional support [13, 27]. Their potential lies not only in
making healthcare services more personalized and accessible, but also in alleviating the
administrative burden on providers by handling routine inquiries and offering real-time support
[29, 36].

2.2.1 LLM-based Conversational Agents in Healthcare

Conversational interfaces powered by large language models (LLMs) are increasingly integrated
with Digital Twins in healthcare through their potential to address limitations of conventional
tools, enhancing patient engagement, streamlining data interaction, and supporting personalized
care [28]. These interfaces enable natural and intuitive communication between users and complex
digital health systems, making health data more accessible and actionable.
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Large Language Models (LLMs) such as GPT-4 [46] or LIaMA [32] are trained on massive
volumes of unstructured text. They can comprehend, generate, and reason with natural language,
unlocking new possibilities for patient-facing applications [10, 13]. These models have reshaped
how patients, professionals, and data interact, making communication more proactive and
personalized. This shift supports dynamic engagement that adjusts to the needs of both patients
and providers; when linked to user-specific health data, LLMs can generate context-aware insights
that enhance interpretability and foster greater user trust in the information provided [29]. Their
ability to aggregate large bodies of textual knowledge and provide contextual, goal-oriented
responses has positioned them as key tools for interactive health support [13].

Recent research illustrates how these capabilities are being extended into physiological data
interpretation. Emerging systems now connect LLM-based dialogue with wearables and clinical
monitoring devices to provide personalized insights. For example, PhysioLLM enables natural-
language interaction with wearable sensor data [9], the Personal Health Insights Agent (PHIA)
delivers wellness feedback from sleep and activity data [43], LLM-CGM supports conversational
queries on continuous glucose monitoring for diabetes care [44], and ALPHA integrates
multimodal physiological signals for anomaly detection and patient guidance [45].

Ongoing efforts to improve the speed, efficiency, and safety of LLMs continue to support their
broader adoption. However, the integration of these systems into clinical and personal health
workflows must be carried out with careful attention to ethical, safety, and privacy considerations
[10, 28].

2.2.2 Technical and Ethical Considerations in LLM-Based Health Systems

While Al conversational systems promise more accessible and personalized care, they also
introduce critical ethical and trust-related challenges that must be addressed to ensure these
technologies truly help and empower those who use them. Patients need reassurance that their
health data is protected, that the information they receive is accurate and unbiased, and that the
system responds in a human-centered, empathetic way.

Data Handling and Security

Integrating LLMs into Digital Twin systems requires special attention to data privacy and secure
processing. While many healthcare systems already follow strict privacy regulations, LLM-based
interfaces introduce unique challenges due to their reliance on external APIs and cloud-based
processing [30, 33]. These systems must be designed with enhanced safeguards, such as local data
preprocessing, encryption, on-device handling where feasible, and transparent communication of
how personal data is used or stored. Projects like PhysioLLM [9] emphasize privacy-preserving
designs that prevent the inclusion of identifiable information in any communication with external
services. Similarly, large-scale wellness systems such as PHIA [43] highlight the risks of scaling
personal data interpretation across populations, underscoring the need for transparency in how user
data is processed and shared.

Reliability and Bias
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Although LLMs show promise in knowledge summarization and natural language interaction, their
application in clinical contexts is limited by concerns over data quality, accuracy, interpretability,
bias, and hallucinated content [10, 31, 32]. These risks are evident in specialized domains, where
models must remain closely aligned with clinical guidelines or curated datasets. For instance,
LLM-CGM demonstrates the challenge of ensuring reliable interpretations in chronic disease
management [44], while ALPHA illustrates how multimodal anomaly detection must balance
technical precision with clinically safe recommendations [45]. These systems should therefore not
be used to provide diagnoses or treatment without human oversight, but rather as support tools
offering contextualized information grounded in verified sources [9].

User Experience and Trust

Conversational interfaces make digital twin systems more user-friendly, empowering patients and
clinicians to interact with health data naturally and intuitively, which can improve self-care and
clinical decision-making [10, 33-35]. However, for patients to trust and engage meaningfully with
these systems, the experience must feel not only helpful but also safe, respectful, and transparent.
This includes clearly communicating the system’s capabilities and limitations, ensuring timely and
fluid responses, and behaving reliably when uncertain [9]. In emotionally sensitive contexts such
as elder care or mental health, thoughtful design is essential to prevent too much trust or
misinterpretation. Ultimately, trust is fostered through functionality, clarity, and empathy of a real
conversation [10].

2.3 Retrieval-Augmented Generation (RAG)
2.3.1 Core Principles of RAG

Retrieval-Augmented Generation (RAG) is a hybrid framework that integrates retrieval-based
methods with generative models to enhance factual grounding and reliability in language
model outputs. By incorporating external knowledge into the generative process, RAG
significantly improves performance in knowledge-intensive tasks such as open-domain
question answering and clinical data interpretation [17, 31, 36]. Unlike traditional large
language models (LLMs), which are constrained by their pre-training data and cutoff dates,
RAG dynamically retrieves relevant context at inference time, reducing hallucinations and
producing more trustworthy responses. This ability to minimize hallucinations is especially
crucial in health-related contexts, where inaccurate or invented responses could undermine
patient trust or lead to serious misinterpretation of physiological data.

The importance of RAG becomes clear when considering the main limitations of LLMs. First,
models are prone to hallucination, often producing confident but inaccurate answers when no
reliable evidence is available. Second, they are not well-calibrated: even when wrong, models
can present their outputs with undue certainty, making errors difficult for users to detect. Third,
LLMs cannot directly access proprietary or domain-specific datasets, such as medical records
or internal clinical notes, solely through prompting. Finally, their static training makes them
poorly suited to answering questions about recent or rapidly evolving information [37].
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The effectiveness of RAG lies in the complementary roles of its two components: the retriever
and the generator. The retriever employs information retrieval (IR) techniques to search
external databases and identify documents most likely to contain relevant evidence for a given
query. These retrieved passages are then supplied to the generator, which integrates them into
coherent, context-sensitive answers [36, 37]. This dual process addresses the weaknesses of
simple prompting by grounding responses in curated datasets rather than relying solely on the
LLM’s parametric knowledge. Figure 2 illustrates this dual structure, highlighting how the
retriever locates contextually relevant documents, which the generator or reader then processes
to produce an evidence-based answer.

query
Retriever > Reader/
thQ: When wasf docs Generator
e premiere of ——» - >
The l\pﬂagic Flute? B A 1791
R Relevant prompt
Indexed Docs Bioes

Figure 2. RAG architecture combining retrieval of relevant documents with generation of grounded responses. From
Daniel Jurafsky and James H. Martin. [17].

The RAG workflow is generally described through three stages:

Indexing. Raw documents are transformed into a standardized text format, segmented into
smaller “chunks” that fit within the model’s context window, and converted into dense
vector embeddings that preserve semantic meaning. These embeddings are stored in a
vector database, enabling efficient similarity search and ensuring that LLMs can access
structured data in a form they can interpret [17, 31].

Retrieval. When a user query is submitted, it is encoded into the same embedding space as
the indexed chunks. The system calculates similarity scores (e.g., cosine similarity)
between the query and stored vectors, and selects the top-K most relevant chunks. This
mechanism ensures that the evidence provided to the model is directly aligned with the
intent and context of the user’s request [17, 31].

Generation. The retrieved chunks are concatenated with the user’s query to form a context-
enriched prompt. The LLM then synthesizes a response that incorporates the retrieved
evidence, balancing factual accuracy with natural language fluency. In this way, the
generation step shifts the system from simple retrieval toward a conversational, user-facing
explanation that remains grounded in curated content [17, 31].
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2.3.2 Role of RAG in Healthcare

Retrieval-Augmented Generation (RAG) is increasingly used in healthcare to enhance the
accuracy, reliability, and transparency of large language model (LLM) outputs by integrating
real-time, domain-specific information [17]. RAG improves clinical decision support, medical
question answering, personalized patient care, healthcare education, and information
extraction by grounding responses in up-to-date, evidence-based sources [21-27].

- Clinical Decision Support. Provides evidence-based, real-time recommendations by
integrating external guidelines and literature, enhancing diagnostic accuracy, and
reducing misdiagnosis rates. Use cases include personalized treatment, emergency
triage, disease management, and diagnostic support [21-23, 27].

-  Medical Question Answering. Enhances LLMs with current, domain-specific
knowledge, surpassing standard models in accuracy and reliability. Applications
include complex guidance interpretation, specialty-specific queries, radiology, and
diabetes-related care questions [21, 22, 24, 25, 27].

- Personalized Patient Care. Combines patient-specific data with current research to
assist personalized treatment planning. Examples include providing the latest learning
resources and providing patients with accessible and personalized health information
[21-23, 26].

- Information Extraction. Automates the extraction of relevant data from EHRs and
scientific literature, streamlining clinical workflows. Key use cases include clinical trial
screening, EHR summarization, and pharmacovigilance [21, 23, 24].

2.3.3 Challenges of using RAG in Healthcare

Although RAG offers a robust framework for improving the factual grounding of LLMs, it is not
without limitations. At a general level, three categories of challenges have been identified: retrieval
difficulties, where systems struggle with precision and may return irrelevant or incomplete chunks;
generation errors, where models still risk hallucinations, irrelevance, or biased outputs; and
augmentation hurdles, where integrating heterogeneous sources can result in incoherent or
redundant responses [31]. These issues become even more pronounced in healthcare, where
medical knowledge is complex, dynamic, and safety-critical.

The main challenges of applying RAG in healthcare can be grouped into various areas, such as:

e Retrieval and Knowledge Limitations. RAG depends heavily on the availability and
quality of external sources. Outdated or incomplete datasets can result in knowledge
deficiencies, particularly in rapidly evolving fields such as medicine. Retrieval systems
may also struggle to identify the most relevant documents or collapse by repeatedly
returning the same evidence, undermining contextual accuracy [21, 31].
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e Hallucinations and Factual Errors. Even when relevant sources are retrieved, RAG
models may still produce hallucinations, factual inaccuracies, or biased outputs. In
healthcare, such errors carry heightened risks, as incorrect recommendations can lead
directly to patient harm [18, 21, 31, 38].

¢ Integration and Contextualization. Medical knowledge is heterogeneous, spanning
narrative text, structured tables, flowcharts, and imaging results. Integrating these diverse
formats into coherent and contextually accurate outputs remains a challenge.
Augmentation can also result in redundancy or incoherence when multiple overlapping
sources are combined [21, 31].

¢ Operational Challenges. In practice, RAG also faces operational hurdles, including high
computational costs, the risk of repetitive or irrelevant retrievals, and the difficulty of

embedding such systems into clinical workflows without adding to clinicians’ cognitive
load [21, 22, 38].

e [Ethical, Legal, and Privacy Constraints. Deploying RAG in healthcare must comply
with strict privacy and safety regulations. Systems risk inadvertently exposing sensitive
patient information if retrieval sources are not adequately secured. Ethical concerns also
extend to fairness, as biases in medical datasets can disadvantage underrepresented
populations. More broadly, the responsible adoption of RAG requires balancing innovation
with accountability, transparency, and legal compliance [18, 21].

In this thesis, we focus primarily on two of these challenges: hallucinations and contextualization.
Specifically, we aim to reduce hallucinations in patient-facing responses and enhance the
integration of structured physiological data, such as heart rate, into coherent and trustworthy
conversational outputs.

2.3.4 Retrieval-Augmented Generation Assessment (RAGASs)

Evaluating Retrieval-Augmented Generation (RAG) systems requires methods that go beyond
traditional natural language processing (NLP) metrics. Standard measures such as BLEU and
ROUGE [31] primarily capture surface-level word overlap. In contrast, more advanced metrics
such as BERTScore [39] leverage semantic similarity but still fail to account for the interplay
between retrieval and generation fully. To address this, the Retrieval-Augmented Generation
Assessment (RAGAs) framework was introduced as a task-specific evaluation method designed
to assess the quality of RAG pipelines in both aspects, retrieval quality and generated accuracy
[17, 31, 35].

Unlike classical metrics, RAGAs does not rely solely on reference answers; it uses proxies for
correctness and utility of retrieved passages, making it effective where gold-standard answers are
scarce [35]. RAGAs can compute these dimensions automatically by prompting an LLM to verify
claims, extract sentences, and compare embeddings between answers and queries [35]. In practice,
these metrics can be combined into composite scores, balancing retrieval precision and generative
fidelity [40]. The framework is typically structured around four core dimensions:
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Faithfulness: measures whether the generated answer remains grounded in the retrieved
context. An answer is considered faithful if its claims can be directly inferred from the
supporting evidence. This metric penalizes hallucinations and unverifiable statements. The
LLM decomposes the answer into factual statements and verifies whether each is supported
by the retrieved context [17, 31, 35, 40]. The score is computed as:

po
|51

Where |V] is the number of statements in the generated answer supported by the retrieved

context, and |S] is the total number of statements extracted from the generated answer.

Answer Relevance: evaluates how well the generated response addresses the user’s
question. It does not measure factual accuracy, but instead penalizes incomplete or
redundant answers that deviate from the original query. To estimate this, the LLM
generates potential follow-up questions from the system’s answer and compares them to
the original query using embedding similarity [17], [31], [35], [40]. This score is computed
as:
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Where q is the user query, q; are follow-up questions from the answer, and sim(q, q;) is
the cosine similarity of their embeddings. The score measures how closely the answer
aligns with the user’s intent.

Context Relevance: assesses whether the retrieved log chunks are appropriate and
sufficient for answering the user’s question. This metric penalizes the inclusion of
irrelevant or redundant information that could dilute the answer. The LLM extracts the
subset of sentences necessary to answer the question and compares them to the full
retrieved context [17, 31, 35, 40]. This metric is computed as:

|Sextl
CR =
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Where |S,,;| is the number of sentences in the retrieved context identified as relevant, and
|C] is the total number of sentences retrieved.
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Chapter 3
Related Work

3.1 LLM-Based Conversational Interfaces in Healthcare

Conversational interfaces powered by large language models (LLMs) have gained attention as
tools to help patients interpret and engage with health data. Research focuses on grounding
dialogue in external evidence to ensure reliability. Wang et al. [42] introduced RAGate, an
adaptive gating mechanism that decides when retrieval is needed during conversation. The system
models conversational context and relevant inputs to predict whether external knowledge (via
retrieval) will improve response quality. RAGate is trained using human-labeled data on when
augmentation was beneficial, and it explores both large language models and attention-based
neural gate models to learn this decision boundary. This work reflects a broader trend toward
integrating dialogue agents with retrieval systems to enhance reliability and trustworthiness.

A second area of research has examined how LLMs can be used for interpreting physiological
signals. Feli et al. [13] developed an LLM-powered agent to estimate heart rate from
photoplethysmography (PPG) signals, implemented on the OpenCHA framework. By combining
user interaction, analytical models, and data sources, their system increased signal-level accuracy
compared to benchmark models. While this contribution primarily focuses on algorithmic
accuracy, it demonstrates that applying LLMs to biosignal processing is feasible.

Building on this, Fang et al. [9] proposed PhysioLLM, an interactive system linking wearable
sensor data with dialogue to provide personalized health insights. Unlike backend analytics,
PhysioLLM lets users query their data in natural language, supporting reflection on lifestyle and
health behaviors. Similarly, Merrill et al. [43] introduced the Personal Health Insights Agent
(PHIA), leveraging LLMs to analyze wearable data like sleep and fitness metrics and generate
behavioral insights. PHIA performed well on over 4,000 health queries, highlighting LLMs'
potential to scale personalized wellness support.

Extending this trajectory into chronic disease management, Healey and Kohane [44] developed
LLM-CGM, a benchmark for conversational querying of continuous glucose monitoring (CGM)
data in diabetes care. Their work demonstrated how LLMs can assist patients in interpreting
numerical glucose trends and retrospective plots by framing them in natural language, thereby
reducing barriers to self-management for individuals with diabetes. Tang et al. [45] further
advanced this research with ALPHA, an LLM-based system for detecting abnormal physiological
health. By combining multimodal signals such as heart rate, oxygen saturation, and
photoplethysmography, ALPHA offered accurate anomaly detection and health insights for users,
highlighting the role of LLMs in bridging physiological data with personalized feedback.

These studies show a continuum in LLM-based health tools: from retrieval mechanisms for
dialogue [42], to biosignal analysis [13], to patient systems emphasizing interpretability with
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wearables [9, 43], and to chronic disease management and anomaly detection [44, 45]. Our work
combines these by embedding heart rate data into a conversational framework, focusing on patient
interpretability within a Digital Twin system.

3.2 Retrieval-Augmented Generation (RAG) for LLMs in Healthcare

Retrieval-Augmented Generation (RAG) has emerged as a promising approach to addressing some
significant limitations of large language models (LLMs) in healthcare, including outdated training
data, hallucinations, and a lack of transparency in outputs. Amugongo et al. [17] provide a recent
systematic review indicating that while RAG grounds responses in external evidence, there
remains limited agreement on which datasets, methodologies, and evaluation frameworks are most
effective in clinical applications. The review highlights a shortage of standardized benchmarks and
ethical safeguards, emphasizing the need for more responsible methods of adoption.

Domain-specific innovations have shown promise in narrowing these gaps. For instance, Zhao et
al. [23] integrate MedRAG knowledge graph—elicited reasoning into retrieval pipelines to enhance
diagnostic accuracy and inform treatment decisions in diseases characterized by overlapping
symptoms. Miao et al. [26] adapted a RAG-enabled ChatGPT system for nephrology by aligning
outputs with KDIGO 2023 guidelines for chronic kidney disease. Their work illustrates RAG’s
potential in specialty domains, enabling outputs that remain guideline-driven and clinically
grounded, beyond general Electronic Health Record (EHR) tasks toward more targeted, precision-
oriented applications.

Empirical studies further underscore RAG’s utility in complex medical reasoning. Thompson et
al. [41] introduced a zero-shot phenotyping method for EHRs, in which disease-relevant text
snippets were retrieved and supplied to the LLM. This approach significantly outperformed
physician-defined rules in diagnosing pulmonary hypertension, demonstrating RAG’s capacity to
support the identification of rare disease cohorts and clinical research pipelines. Separately, Wang
et al. [42] developed RAGate, an adaptive mechanism that selectively determines when retrieval
is needed during conversation. Although initially aimed at general dialogue, its dynamic alignment
of context and retrieval has clear implications for healthcare’s demand for interpretable and
trustworthy systems.

Beyond domain-specific case studies, systematic evaluations have begun to map RAG’s internal
architecture and design decisions. Kay et al. [22] categorize biomedical RAG approaches into pre-
retrieval, retrieval, and post-retrieval stages, emphasizing how preprocessing strategies, such as
summarization and chunking, can directly influence retrieval relevance and system performance.
This directly supports our study’s emphasis on pre-retrieval summarization as a critical step to
enhance interpretability in heart rate data applications.

Similarly, evaluation methods are evolving. Gargari and Habibi [21] compared human and
automatic metrics for medical RAG systems and found RAG models often outperform baseline
LLMs while maintaining clinical reasoning performance. Additionally, Bora and Cuayahuitl [25]
analyzed RAG-based medical chatbots, comparing hybrid and fine-tuned models in terms of
accuracy, factual grounding, and confidence. Their results suggest RAG can improve reliability
but highlight the need for testing in realistic clinical scenarios.
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Together, these contributions reinforce the importance of RAG as a foundational strategy for
improving LLMs in healthcare. Reviews [17], knowledge designs [23], domain adaptations [26],
applications [41], mechanisms [42], and evaluation frameworks [21, 25] show RAG’s potential to
connect clinical data with interpretable, evidence-based results. Progress relies on robust
benchmarks, ethical safeguards, and domain-specific changes. Our study contributes to the
integration of RAG into patient interfaces that interpret heart rate data within Digital Twin systems,
emphasizing clarity, trust, and context.

3.3 Identified Gap and Research Focus

Taken together, these strands of research highlight two converging directions: conversational
interfaces that enable patients to interact with and interpret physiological data, and retrieval-
augmented generation pipelines that strengthen reliability, grounding, and domain adaptation in
healthcare. However, limited work has explored how these two directions can be meaningfully
combined to support patient-facing interpretation of physiological signals, particularly heart rate,
within Digital Twin systems.

Our work extends this intersection by embedding RAG into a Digital Twin framework, enabling
patient-facing interpretability of heart rate data through conversational exchanges. This
contribution bridges methodological advances in retrieval with user-centered design, addressing
both the technical and experiential challenges of making physiological signals accessible and
meaningful to patients.
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Chapter 4
Methodology

This research was developed as part of a collaboration with imec One Planet, a digital health
research institute focused on preventive, personalized technologies for sustainable healthcare
solutions [52]. It investigates, designs, and develops an iterative prototype that bridges the gap
between structured physiological data and patient understanding through context-aware dialogue.
To align with ethical standards in healthcare, the system is explicitly designed to avoid offering
diagnostic or treatment advice.

4.1 Research Design

Given the interpretive focus of the research questions, this study adopts a mixed-methods research
design that integrates both quantitative and qualitative perspectives. On the technical side,
quantitative metrics are used to evaluate the accuracy and reliability of the LLM-based system
proposed. On the human side, qualitative evaluation is conducted through user studies that
investigate perceptions of trust, tone, clarity, and usefulness. Together, this dual focus ensures that
the methodology captures both computational performance and user experience, reflecting the
central goal of improving the interpretability of health data.

Although not yet recognized as a standard method in digital health, this dual-focus methodology
is guided by principles from Human-Computer Interaction (HCI) and Health Informatics (HI) [24,
25]. HCI provides methods for embedding usability and user feedback throughout system
development, while HI contributes to the structuring, interpretation, and communication of health
data responsibly. Drawing on Natural Language Processing (NLP) and responsible Al design, the
methodology ensures that both algorithmic logic and human needs inform the development and
evaluation of the prototype.

4.2 Research Process

The research process is structured around four stages: Research, Prototype Development, User
Study, and Evaluation.

Stage 1: Literature Review and Prototype Design Choices

This stage established the foundation for the system by investigating prior work on Digital Twins,
conversational interfaces, and responsible Al in healthcare. Through a focused literature review
and design exploration, communication gaps were identified in how patients interpret health data,
particularly the lack of supportive, trustworthy, and comprehensible feedback mechanisms. This
analysis highlighted the potential of Digital Twins for personalized monitoring, but also the
difficulty patients face in engaging with raw physiological data.
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Further review of conversational interfaces and LLM-based systems in healthcare revealed both
opportunities and risks: while such models can generate accessible explanations, they also raise
concerns of reliability, bias, and trust. Retrieval-Augmented Generation (RAG) was identified as
a promising strategy to ground model outputs in structured data and mitigate hallucinations. At the
same time, recent advances in evaluation frameworks emphasized the importance of combining
computational metrics with user-centered assessments.

Together, these insights not only defined the initial system requirements around interpretability,
empathy, and the avoidance of diagnostic advice but also guided the technical choices and overall
design approach for the prototype. As such, this stage functioned both as a literature review and as
the basis for shaping concrete design decisions in the system’s development.

Stage 2: Data Simulation and Prototype Development

To prepare for system development, the study first simulated heart rate datasets designed to
resemble real physiological signals. These datasets were generated following the structure of the
PPG-DaLiA study [19], incorporating realistic activity segments, including resting, walking, and
exercising. An 8-second window with a 2-second shift was used to calculate mean instantaneous
heart rate values, a common practice in PPG-based heart rate estimation. This approach enabled
controlled experimentation while avoiding privacy risks associated with real patient data. Heart
rate was selected as the focal parameter due to its broad interpretability and relevance across
medical and everyday wellness contexts. However, the use of simulated inputs necessarily
excluded natural signal variability, which is acknowledged as a limitation of this study.

To support semantic parsing and natural language generation, the raw time-series data were
transformed into structured hourly summaries. These summaries extracted key features, such as
heart rate metrics and behavioral context, and organized them into predefined fields. This structure
is better aligned with human time perception and allows the system to efficiently interpret and map
physiological trends into meaningful, context-aware prompts. By reducing data complexity and
ambiguity, the structured summaries served as a critical intermediary, enabling the conversational
agent to generate coherent, grounded, and patient-tailored responses.

Building on this foundation, the prototype was designed as a web-based interface integrating three
core components: (1) the structured dataset of heart rate summaries, (2) a rule-based classification
layer to distinguish normal and abnormal values in relation to demographic context, and (3) a
conversational module powered by a Large Language Model (LLM) supported by Retrieval-
Augmented Generation (RAG). The preprocessing step can be understood as the foundation of the
retrieval pipeline, situated within the pre-retrieval phase of RAG pipelines, as described in recent
systematic reviews of biomedical applications [22], where such strategies play a critical role in
improving retrieval relevance and efficiency.

This architecture was deliberately chosen to balance technical reliability with communicative
clarity: the structured dataset ensured consistent input, the rule-based layer provided transparent
and clinically informed thresholds, and the RAG-enhanced dialogue system anchored generative
responses in factual data while reducing hallucinations.

26



For the conversational module, the study employed LLaMA 3.2 [32], an open-weight LLM variant
developed by Meta. This model was selected for its strong instruction-following capabilities,
lightweight deployment requirements, and ability to run locally without reliance on external APIs.
These characteristics aligned with methodological priorities of reproducibility, transparency, and
data privacy, while also enabling iterative experimentation in prompt design and system
refinement. To guide the assistant’s tone and behavior, the temperature parameter of the LLM was
set to 0.7. This value was selected to strike a balance between response diversity and coherence,
enabling the assistant to produce conversational and empathetic outputs while still grounding its
responses in factual, retrieved context.

This methodological choice reflects the dual objective of the study: to ground system responses in
traceable physiological trends while presenting them in a way that patients could understand and
trust. By integrating safeguards at both the data and system levels, the prototype ensured that
interpretive feedback remained accurate, accessible, and within clearly defined non-diagnostic
boundaries.

Stage 3: Iterative Refinement

To refine the system systematically, development followed an iterative approach across three
versions of the prototype, further explained in Section 5.5.1: Version 1 (V1), Version 2 (V2), and
Version 3 (V3). Each iteration incorporated targeted design modifications based on identified
limitations, evolving the assistant’s capacity for interpretive support while maintaining its non-
diagnostic role.

e Iteration 1 focused on establishing a proof of concept by implementing the whole end-to-
end system architecture. This included the core pipeline of structured data preprocessing,
rule-based classification, and LLM-driven dialogue generation. At this stage, the system
supported specific time-based and general health queries. This initial version served as a
baseline for assessing the feasibility of RAG-enhanced interpretation and set the foundation
for subsequent refinements.

e Iteration 2 extended the retrieval mechanism to support a broader range of query types by
identifying and selecting relevant time-adjacent chunks based on semantic alignment,
rather than relying solely on strict time matching. This involved retrieving the closest
matching chunk as well as contextually relevant surrounding summaries. A fallback
strategy was also introduced to ensure the assistant could still generate responses in cases
where exact time matches were unavailable. The primary objective of this stage was to
enhance the contextualization of heart rate data across broader timeframes, enabling the
system to handle more flexible user queries.

e Iteration 3 expanded the retrieval logic further by enabling the assistant to retrieve all
available hourly summaries for a given user when handling generalized or summary-type
queries. This allowed the assistant to synthesize a broader context across multiple time
windows. Additionally, demographic-aware logic was incorporated into the classification
layer and prompt generation process. The retrieved context was now tailored based on user-
specific thresholds and comparison norms (e.g., age-appropriate heart rate ranges),
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improving the precision and personalization of the retrieved information without altering
the fundamental retrieval infrastructure. Iteration 3 also emphasized testing the trade-off
between interpretive richness and precision, aiming to approximate real-world use cases
more closely.

By structuring development in these iterations, the methodology allowed for controlled exploration
of design choices and their impact on system performance. This staged approach ensured that
refinements were traceable and systematically informed by observed limitations rather than
arbitrary adjustments.

Stage 4: User Study and Data Collection

The fourth stage involved evaluating the prototype with nine participants in a simulated usage
environment. Rather than being isolated at the end, this stage was conducted in parallel with the
iterative development process, allowing user feedback to shape system refinements across versions
actively. The study examined how participants interpreted the system’s responses, focusing on
clarity, emotional tone, usefulness, and trustworthiness. To simulate realistic use, participants
engaged in both structured tasks and open-ended interactions, where they could freely explore the
assistant’s capabilities.

The evaluation followed a two-phase approach. The exploration phase involved a small set of
participants who interacted with early iterations of the prototype. This phase served to test
feasibility, identify immediate usability issues, and generate formative feedback that informed
refinements. The main evaluation phase involved a larger group of participants. It focused on
systematically assessing the refined prototype, allowing for a more robust understanding of user
perceptions regarding trust, interpretive support, and conversational flow.

Participants were recruited voluntarily from imec full-time employees, who provided valuable
exploratory insights into how communication design choices shaped perception and trust. Data
collection involved:

- Quantitative measures: standardized questionnaires to capture perceptions of clarity,
naturalness, safety, and usefulness.

- Qualitative measures: open-ended feedback and semi-structured interviews to explore
expectations, trust, and interpretive support in greater depth.

All data was anonymized, and no personal health information was used. Ethical safeguards were
applied by ensuring that the prototype explicitly avoided diagnosis or prescriptive advice, framing

itself solely as an interpretive assistant.

This stage provided critical insight into how the system supported or hindered user understanding
of heart rate data.
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Stage 5: Evaluation
Evaluation combined technical and user-centered perspectives.

- Technical evaluation: Metrics from the RAGAs framework were applied, focusing on
context relevance, answer relevance, and faithfulness. These scores quantified how well
the assistant’s responses aligned with retrieved logs and user intent. Comparisons with a
baseline LLaMA 3.2 model without retrieval provided further insight into the contribution
of the RAG pipeline.

- User evaluation: Interviews and questionnaire results were analyzed by thematic analysis
of user comments. This dual approach revealed not only numerical usability ratings but
also perceptions of tone, interpretive value, and conversational flow.

Together, these methods provided a multi-layered understanding of system performance, linking
quantitative indicators with subjective user experience.

Stage 6: Results and Interpretation

This stage focused on systematically analyzing the data collected through both technical metrics
and user evaluations. Quantitative results from computational assessments (e.g., context relevance,
faithfulness, and answer relevance) were combined with qualitative feedback from questionnaires
and interviews. Our analysis process focused on triangulation, combining technical indicators with
user perceptions to spot patterns and trade-offs. This approach made sure our findings were not
interpreted in isolation but rather considered within both the computational performance and the
human-centered experience.

Stage 7: Conclusion and Future Work

The final stage synthesized insights from all preceding phases into a coherent conclusion.
Methodological outcomes were consolidated to address the research questions directly, while also
acknowledging the study's limitations. Building on identified limitations, this stage outlined clear
directions for future research, such as validation with real-world data, testing with larger and more
diverse participant groups, and exploring advanced conversational strategies or model
configurations. By closing with both reflection and projection, this stage ensured the research
contributes not only immediate insights but also a roadmap for further exploration.

Figure 3 provides an overview of the methodological stages, illustrating the progression from

research and prototype development to iterative refinement, user study, evaluation, and
interpretation.
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Figure 3. Overview of the research methodology, showing the progression from literature
review and prototype development to iterative refinement, user study (exploratory and
main phases), technical evaluation, data analysis, and synthesis of results.
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Chapter 5
Prototype Development

5.1 System Architecture Overview

This chapter presents the technical development of the prototype system, structured to simulate a
conversational assistant for interpreting heart rate data from a Digital Twin (DT) healthcare
context. The design aims to support non-clinical users in understanding physiological heart rate
data through a user-centered, explainable, and modular architecture while avoiding overwhelming
or hallucinated answers through the human-computer interaction. Each component contributes to
a layered pipeline that transforms offline raw heart rate measurements into natural language
insights tailored to individual contexts, maintaining trustworthiness and ethical responsibility.

Figure 4 represents the system architecture, which follows a five-stage modular pipeline serving
as a visual reference for the detailed breakdown of each component described in the following
sections. Each stage in the structure builds on the outputs of the previous one, starting with the
ingestion of preprocessed structured heart rate datasets designed to simulate a range of real-time
physiological conditions, including resting baselines, light activity (e.g., walking), post-meal
states, and stress-induced elevations caused by cognitive or physical exertion. These datasets were
generated using a clinical-rule logic to mimic abnormal heart rate patterns based on demographics
and activity. Abnormal episodes lasted at least 10 minutes during periods of inactivity, surpassing
established thresholds. The simulated data are then embedded into structured summaries, which
then serve as input to a Retrieved-Augmented Generation (RAG) pipeline. This retrieval system
identifies and extracts the most relevant information from the structured context to support the
prompt given to a Large Language Model (LLM) interpretation layer, which then provides a
context-reliable answer to the user's query. The LLM then generates an empathetic, natural
language response that incorporates both the user’s heart rate state, derived from the retrieved
structured summary, and the interpretive rules specified in the prompting strategy. Finally, the
output is delivered via a user-friendly Conversational Interface that simulates an interaction with
a digital health assistant. The architecture supports two primary interaction modes: system-
initiated alerts triggered by abnormal heart rate patterns and user-initiated queries regarding heart
rate trends or conditions.

To assess the quality of the system, we employed Retrieval-Augmented Generation Assessment
(RAGASs) [17], a framework for evaluating RAG-based systems. This NLP evaluation technique
provides metrics to assess both the retrieval component through context relevance, which evaluates
the RAG pipeline, and the generative component, by measuring the faithfulness and answer
relevance of the LLM responses [34, 35]. Each of these four aspects is scored on a scale from 0 to
1, ensuring that the assistant’s outputs remain grounded, informative, and contextually appropriate.
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Figure 4. System architecture and interaction design of the LLM-Based Conversational Interface. The architecture
proceeds through five main stages: (1) ingestion of pre-processed simulated heart rate datasets, (2) data analysis and
generation of structured summaries, (3) retrieval of relevant context via the RAG pipeline, (4) generation of context-reliable
responses in the LLM-based interpretation layer, and (5) delivery of outputs through a Streamlit-based conversational
interface. The interface supports two modes of interaction: system-initiated alerts triggered by abnormal heart rate
patterns, and user-initiated queries regarding heart rate states.

5.2 Heart Rate Datasets

Two types of heart rate data sources were used to support the simulation of structured health
insights: a public dataset and a simulated one, each contributing complementary value. The public
dataset ensured ecological validity through real-world physiological signals, while the simulated
data enabled experimental control through customizable scenarios aligned with the system’s
interpretive goals.

5.2.1. Public Dataset

The initial system development and testing used the PPG-DaLiA dataset from the UCI Repository
[19] (see Section 5.5 for evaluation details). This dataset includes synchronized recordings from
photoplethysmography (PPG) and electrocardiography (ECG), two complementary methods for
measuring heart rate. PPG estimates heart rate through changes in blood volume, while ECG
derives heart rate from the electrical signals of cardiac cycles, typically by identifying R-wave
peaks within the QRS complex, which correspond to individual heartbeats. The recordings were
segmented into 8-second overlapping windows with a 2-second shift. In each window, heart rate
was estimated by detecting signal peaks corresponding to heartbeats, resulting in beats per minute
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(BPM) values. This approach produces a new heart rate measurement every 2 seconds, offering a
high-resolution view of physiological changes over time.

Data were collected from 15 healthy participants (seven male, eight female), aged 22 to 39 years,
during a 2.5-hour recording session in real-world, free-living conditions. These participants
performed a series of predefined activities, including sitting, standing, walking, running, cycling,
climbing stairs, and transitioning between these states. Each segment of physiological data was
labeled with corresponding activity annotations, providing a structured overview of the
participant's physical state. These labels helped distinguish between low-energy-demand activities
(e.g., sitting, standing still, baseline, or “no_activity” periods) and high-energy-demanding
activities (e.g., walking, cycling, or running).

To provide clarity on the structure of the PPG-DaLiA dataset, Table 1 presents a summary of its
key signals and annotations. This summary outlines the main physiological recordings and their
corresponding features, which form the basis for subsequent preprocessing and analysis in this
study.

Table 1. Summary of the PPG-DaLiA dataset [19], listing the key physiological signals and annotations used in this study.

Dataset Component Description Unit / Format
Timestamp Time index of the recording Seconds (s)
Photoplethysmography signal Arbitrary units (raw
PPG . .
measuring blood volume changes signal)

Electrocardiography signal of
cardiac electrical activity; HR

ECG derived from R-wave peaks in the Milivolts (mV)
QRS complex
Annotated activity class (e.g.,

Activity_label eating, walking, cycling, working,  Categorical label

sleeping)

Heart rate computed from
Hr_bpm PPG/ECG peak detection, Beats per minute (BPM)
expressed as beats per minute

Segmented 8-second window with

Window_id 2-second shift for analysis

Index

This classification provided a solid foundation for developing and testing the system’s heart rate
interpretation logic, due to its synchronized data and structured activity labels. The activity labels
were crucial for identifying abnormalities: elevated or decreased heart rate values were only
considered significant during low-energy-demand conditions. This approach aligns with clinical
reasoning, where physiological anomalies at rest are more concerning than those during exertion.
While this method relies on activity labels from the dataset, it is worth noting that such precise
activity recognition may not be readily achievable in real-world settings.
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Figure 5 illustrates the structured mapping between heart rate values and activity labels in the PPG-
DaLiA dataset.
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Figure 5. Data collection protocol from the PPG-DaLiA dataset [19], illustrating activity labels

and corresponding ECG-based heart rate signals. White segments indicate transient periods
between activities.

5.2.2 Simulated Dataset

Building on the structure and logic of the PPG-DaliA dataset, two customized heart rate
simulation scenarios were developed using Python to facilitate controlled testing of the system’s
classification logic. This classification logic was based on predefined clinical thresholds that
categorize heart rate values into medically relevant states, such as normal resting values or an
abnormal, elevated heart rate classified as tachycardia. Abnormal episodes lasted at least 10
minutes during periods of inactivity, surpassing established thresholds. These thresholds consider
demographic parameters, such as age and gender, in conjunction with widely accepted clinical
benchmarks [16]. For example, the system assumes that a woman aged 65 or older with below-
average cardiovascular fitness may have a healthy resting heart rate between 77 and 84 beats per
minute (bpm). While a man in the same age group may have a range of 74 to 79 beats per minute
[20].

The dataset included two virtual users with distinct but elderly demographic profiles, reflecting
the target group of this study. Older adults are especially important in this context because
abnormal heart rate episodes are more common and clinically significant in this group, and they
also tend to have less technological experience, making clear and interpretable system feedback
especially vital. The first, Alessa, is a 67-year-old female identified as the healthy user, with a
baseline resting heart rate of 84 beats per minute (bpm). The second, Bryan, is a 70-year-old male
modeled to simulate a realistic alert-triggering scenario. Although his baseline heart rate is 79 bpm,
Bryan experiences abnormal elevations during low-energy activities. This abnormal profile
enabled the system to test its detection, interpretation, and explanation pipeline under conditions
similar to those of early warning signs in real-world health monitoring.
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To simulate a realistic yet controlled daily routine, both users were assigned an 8-hour schedule
composed of six activity segments: sleep (60 minutes), work (180 minutes), walk (30 minutes),
exercise (60 minutes), meal (30 minutes), and leisure (90 minutes). For each segment, heart rate
values were generated by applying randomized, activity-specific multipliers to each user’s baseline
rate, along with low-amplitude noise to reflect physiological variability. This process can be
formalized as:

HR; = HRpgsetine X Mg + €
Where:

HRygsetine: baseline heart rate for the virtual user (e.g., 79 bpm for Bryan)

M;: multiplier linked to the activity segment (e.g., 0.95-1.05 for sleep, 1.3-1.6 for exercise)
€, random noise from a Gaussian distribution representing physiological variability

t, each time step (every 2 seconds in the simulation)

Low-energy segments such as sleep, meal, work, and leisure served as baseline contexts for
detecting abnormal heart rate patterns.

Following the same temporal segmentation logic as the public dataset, the signals were processed
using an 8-second sliding window with a 2-second shift, producing a new heart rate estimate every
2 seconds. This yielded 14,400 data points per user across the simulated 8-hour period (from 08:00
to 16:00), each paired with a timestamp and activity label. The resulting data were exported as
synchronized CSV files, enabling reproducible, interpretable testing of the system’s classification
and reasoning capabilities.

Figure 6 illustrates one of the simulated datasets generated for this study, specifically the abnormal
heart rate scenario. It shows timestamped heart rate values across an 8-hour simulated day, with
color-coded segments representing different activity periods. The red-highlighted segment
indicates an abnormal elevation in heart rate during the meal period, a low-energy-demand activity.
Although Bryan’s baseline resting heart rate was defined at 79 bpm for simulation purposes, values
in this segment rose above 100 bpm. This exceeds the clinically accepted resting range of 60—100
bpm for a 70-year-old adult and was therefore modeled as a tachycardia-like event. The anomaly
was intentionally introduced to test whether the system could identify potentially concerning
physiological responses in contexts where an elevated heart rate is unexpected.
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Figure 6. Simulated dataset for the virtual subject Bryan (70-year-old male, baseline HR: 85 bpm) over an 8-hour day.
Black points indicate time-stamped heart rate estimates generated every 2 seconds. Colored background segments
correspond to the six simulated activities: sleep, work, walking, exercise, meal, and leisure. This structure enables the
system to interpret heart rate trends within context, flagging abnormal elevations during periods of low energy demand,
“meal” as potentially concerning in this case.

5.3 Data Analysis and Summaries Generation

To ensure that the system could interpret heart rate data meaningfully and in a format suitable for
language-based reasoning, a dedicated pre-processing step was implemented to convert raw
simulation logs into structured and semantically rich datasets. This stage involved generating three
intermediate .csv files and one final .json summary per user. These structured outputs ensured that
both physiological data (heart rate) and behavioral context (activity) were aligned correctly and
formatted for downstream interpretation. This step is crucial because the final system relies on
structured, textual summaries rather than raw numbers as input for its language model-based
interpretation.

5.3.1 Structuring Raw Heart Rate and Activity Logs

The first stage of data preparation involved generating three structured .csv files for each user,
each serving a specific purpose in transforming raw simulation outputs into an interpretable
dataset.

The first file, user_hr.csv, recorded heart rate readings every two seconds throughout the whole
8-hour simulation period. This file captured the user’s complete physiological trace with high
temporal resolution, preserving detailed fluctuations in heart rate over time.

The second file, user activities.csv, documented the user's daily routine in broader segments.
Each entry included a “start _time”, “end_time”, and an associated “activity” label such as "sleep",
"work", or "exercise". These activity blocks typically spanned several hours, rather than matching

the per-second resolution of the heart rate data.

To create a unified view of the user’s physiological and behavioral state, we generated a third file,
user_merged.csv, by aligning the two datasets. For each heart rate entry, the system identified the
corresponding activity based on the timestamp and assigned it as a new label. As a result, a new
row was generated in the merged file, combining every two-second timestamp with a heart rate
value and its associated activity.
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Out of the three files, only the merged dataset (user_merged.csv) was used as input for the LLM
pipeline. This file provided the combined temporal alignment of heart rate data and activity labels
necessary for retrieval and prompt construction. The other files (user hr.csv and
user_activities.csv) served as intermediate outputs during preprocessing and were not directly
accessed by the LLM.

5.3.2 Summaries Generation: Preparing Data for Interpretation

A final summarization step was performed to generate a .json file that would support more efficient
interpretation by the system. Unlike the .csv files, which preserved high-resolution time series
data, the .json summary was designed to condense the essential information into hourly snapshots.
These summaries enabled a structured representation of physiological and behavioral trends,
providing consistently formatted inputs suitable for semantic parsing and natural language
generation.

Each entry in the .json file corresponded to a single hour-long segment, beginning at hh:00:00 and
ending at hh:59:59. For every such interval, the system extracted and stored key statistical features:
“the minimum heart rate”, “maximum heart rate”, “mean heart rate”, and the “most frequent
activity”. These fields are defined in Table 2, which presents the structure and meaning of each
element included in the hourly summaries. Together, these summaries provided a structured, high-

level view of the user's physiological and behavioral state across the simulated hours.

The decision to use hourly summaries was made to strike a balance between temporal resolution
and interpretability. It can also be understood as a pre-retrieval strategy, consistent with
frameworks outlined in recent systematic reviews [22]. An hour-long window is long enough to
capture meaningful trends in heart rate and activity, while still aligning with how users typically
refer to time in natural conversation (e.g., “around 1:30 PM”). In such cases, the system retrieves
the summary for the 1:00-1:59 PM interval, ensuring that the response is grounded in a
semantically relevant and temporally appropriate chunk. This design approach reduces time-
related ambiguity, improves coherence during question answering, and helps minimize
hallucinations by constraining the model’s input to structured, factual summaries.

In the simulated setup, this process resulted in nine hourly summaries per user, covering the
monitoring period from 08:00 to 16:00. Each entry in the .json file followed the structure shown
below:

"start_time": ,
"end_time": ,
"min_hr": 47.85,
"max_hr": 51.84,
"mean_hr": 49.85,
"most_common_activity

: "sleep”
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Table 2. Structure of the preprocessed hourly summaries used for semantic retrieval and prompt grounding.

Data Attribute Description Format
) Start timestamp of the hourly DD-MM-YYYY hh:mm:ss
Start_tim segment (e.g., 05-04-2025 9:00:00)
) End timestamp of the hourly DD-MM-YYYY hh:mm:ss
End_time segment (e.g., 05-04-2025 9:59:59)
) Minimum heart rate recorded Float
Min_hr within the hourly segment (e.g., 53)
Maximum heart rate recorded Float
Max_hr within the hourly segment (e.g., 94)
Mean heart rate calculated over Float
Mean_hr the entire hourly segment. (e.g., 72)
Most frequenctly detected String

Most_common_activity activity during the hour (e.g., “Work”)

5.3.3 Scenarios Configuration and Alert Triggering

Scenario A: Alert-triggering abnormal profile

The prototype incorporated an abnormal heart-rate alert, mimicking real-world systems that flag
deviations from expected resting heart rate ranges for follow-up. The thresholding was based on
physiological literature discussed in Section 5.2.2.

Building on this, the alerting mechanism was configured with a conservative sensitivity threshold
for the simulated case of an old male with a baseline resting heart rate of 79 bpm, ensuring
reproducibility and alignment with the dataset’s demographic structure. An alert was triggered
when the following conditions were met:

- Context: the activity label indicated inactivity (NO ACTIVITY, BASELINE).

- Threshold: heart rate > 90 bpm (male cutof¥).

- Persistence: the elevation was sustained for > 10 minutes, equivalent to > 300 consecutive
2-second samples (the simulated dataset produced a new estimate every 2 seconds using 8-
second windows shifted by 2 seconds).

When these criteria were met, the system flagged the corresponding time span and stored it as an
alert context. This storage mechanism enabled later retrieval without recomputation, ensuring that
any reference to the alert remained anchored to the same underlying data. The retrieval process for
follow-up queries using these stored contexts is described in Section 5.4.1.

38



Scenario B: Healthy baseline profile

For this case, an old female with a baseline resting heart rate of 84 bpm was modeled as the healthy
case. For this scenario, no abnormal alerts were configured; instead, her data were used to validate
system interpretability in non-alert conditions. Queries focus only on time-based retrieval and
summarization of logs, without triggering the alerting mechanism. The retrieval process for queries
using this context is described in Section 5.4.1.

This dual-scenario design allowed the prototype to demonstrate both (i) the system’s ability to flag
and explain abnormal heart-rate events in an abnormal heart rate case, and (ii) its ability to support
standard interpretability and reflection for a healthy-patient case.

5.4 Interpretation Layer

To generate responses that are contextually accurate, personally relevant, and grounded in real
user data, this system implements an integrated interpretation layer composed of three core
components: a Retrieval-Augmented Generation (RAG) pipeline, a locally deployed large
language model (LLM), and an interactive conversational interface. Together, these elements form
the backbone of the assistant’s interpretive logic, retrieving semantically relevant health
summaries, processing them through prompt-based reasoning, and delivering responses through a
user-facing interface. This section details how each component was designed and implemented to
support trustworthy, real-time dialogue grounded in simulated heart rate data.

5.4.1 Retrieval-Augmented Generation (RAG) for Grounded Responses

To ensure that the assistant’s responses remain grounded in factual, patient-specific data and to
mitigate the risk of hallucinations often associated with Large Language Models (LLMs), we
implemented a Retrieval-Augmented Generation (RAG) pipeline customized for our simulated
heart rate summaries. This approach enables the system to retrieve relevant physiological insights
in real time and condition the language model’s output on that retrieved context. The process
begins by converting hourly summary entries into semantically rich natural language text. These
texts are then embedded into numerical vector representations, indexed for similarity search, and
retrieved dynamically after the user submits a question. By embedding this factual memory layer
into the prompting strategy, the assistant can produce responses that are not only interpretable and
grounded in real trends but also tailored to individual users.

Following the RAG workflow outlined in the most recent retrieval augmented generation for large

language models systematic review and survey [17, 31], our implementation can be divided into
four key stages, as shown in Figure 7.
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Figure 7. Overview of the Retrieval-Augmented Generation (RAG) pipeline applied to heart rate interpretation. The system
processes structured physiological summaries, retrieves semantically relevant chunks based on the user query, and generates
context-grounded responses using a locally hosted Large Language Model (LLM). A comparison with a non-RAG response is
included to illustrate the system's ability to generate personalized and data-grounded answers.

Indexing. This process begins by processing structured hourly summaries generated from
simulated physiological data. To prepare this data for interaction with a retrieval-augmented
language model, each entry is converted into a plain-text sentence using a deterministic, template-
based formatter. This step ensures semantic clarity and makes the content compatible with
language model input constraints, which include the minimum, maximum, and mean heart rate, as
well as the most frequent activity label. The template used was:

chunk = ( f"At {time_str},{subject.capitalize()} was mostly {activity}."
f"The heart rate ranged from {min_hr} to {max_hr} bpm,with an average of {mean_hr} bpm.")

Each formatted sentence is treated as a standalone chunk to accommodate the language models'
limited context window and support efficient retrieval, resulting in 16 chunks across two users as:

01.At 8: 00, Alessa was mostly sleep. The heart rate ranged from 48 to 52 bpm, with an average of 50 bpm.
02. At 09:00, Alessa was mostly work. The heart rate ranged from 72 to 76 bpm, with an average of 74 bpm.
03. At 10:00, Alessa was mostly work. The heart rate ranged from 72 to 76 bpm, with an average of 74 bpm.
04. At 11:00, Alessa was mostly work. The heart rate ranged from 72 to 76 bpm, with an average of 75 bpm.
05. At 12:00, Alessa was mostly walk. The heart rate ranged from 83 to 98 bpm, with an average of 90 bpm.
06. At 13:00, Alessa was mostly meal. The heart rate ranged from 67 to 98 bpm, with an average of 77 bpm.
07. At 14:00, Alessa was mostly leisure. The heart rate ranged from 72 to 76 bpm, with an average of 74 bpm.

40



08. At 15:00, Alessa was mostly leisure. The heart rate ranged from 72 to 76 bpm, with an average of 74 bpm.
09. At 08:00, Bryan was mostly sleep. The heart rate ranged from 47 to 51 bpm, with an average of 49 bpm.
10. At 09:00, Bryan was mostly work. The heart rate ranged from 84 to 88 bpm, with an average of 86 bpm.
11. At 10:00, Bryan was mostly work. The heart rate ranged from 84 to 88 bpm, with an average of 86 bpm.
12. At 11:00, Bryan was mostly work. The heart rate ranged from 84 to 88 bpm, with an average of 86 bpm.
13. At 12:00, Bryan was mostly walk. The heart rate ranged from 105 to 116 bpm, with an average of 110 bpm.
14. At 13:00, Bryan was mostly meal. The heart rate ranged from 82 to 116 bpm, with an average of 92 bpm.
15. At 14:00, Bryan was mostly leisure. The heart rate ranged from 83 to 87 bpm, with an average of 85 bpm.
16. At 15:00, Bryan was mostly leisure. The heart rate ranged from 84 to 87 bpm, with an average of 86 bpm.

The activity labels in these chunks (e.g., sleep, meal, leisure) are preserved exactly as they appear
in the dataset to ensure reproducibility, even if some labels do not align perfectly with natural
conversational phrasing. These chunks were encoded into dense vector representations using the
SentenceTransformer model all-MiniLM-L6-v2 from HuggingFace, which produces 384-
dimensional embeddings optimized for semantic similarity tasks. To prepare them for cosine
similarity search, all embedding vectors were normalized to unit length according to:

.V
D=

1

Where v is the raw embedding vector, ¥ is the normalized unit vector, and ||v|| represents the
magnitude (length) of the vector.

The resulting vectors were stored as a serialized file and indexed using FAISS with the
IndexFlatL2 configuration, which computes inner product similarity equivalent to cosine
similarity under vector normalization. While cosine similarity was chosen for its widespread use
and reproducibility in semantic retrieval tasks, alternative similarity measures such as the
(unnormalized) dot product between learned embeddings [49] could be explored in future
iterations to examine potential trade-offs in retrieval performance. The resulting vector index was
stored in a separate file-based vector database for each user (serialized as .pkl files using FAISS).

This lightweight setup enabled user-specific retrieval and maintained isolation between simulated
patient profiles while supporting local retrieval operations. In total, the index comprised 16 vectors
associated with their corresponding text chunks, allowing for efficient and reproducible retrieval
of semantically relevant summaries during interaction.

Retrieval. The retrieval stage activates once a user submits a query through the assistant interface.
To enable semantic matching between the query and the pre-processed summaries, the query is
embedded using the same SentenceTransformer model (all-MiniLM-L6-v2) applied during
indexing. Both query and chunks exist in the same 384-dimensional vector space, and the query
embedding is normalized to unit length so that cosine similarity can be applied against the user-
specific FAISS index.

When a query contains a time reference (e.g., “How was my heart rate at 11:00?”), the system
maps the input to the nearest hourly summary and retrieves that single chunk (11:00-11:59 in this
case). This one-to-one mapping ensures temporal precision and prevents the assistant from
introducing ambiguity in its responses. In contrast, for queries without a specific hour reference
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but still general time-based (e.g., “Did my heart rate return to normal after the alert?”’), the system
performs a full similarity search across all summaries. It retrieves the top-k = 3 most relevant
chunks (13:00-13:59,14:00-14:59, 15:00-15:59 in this case). This design choice was informed by
common temporal expressions observed during testing, such as “later,” “morning,” or “afternoon,”
which usually span multiple consecutive hours. Selecting the top 3 chunks allowed the system to
offer enough context for such periods without exceeding token limits or introducing irrelevant
content. This balance enabled the assistant to generate grounded and informative responses for
broader temporal queries.

In the case of alert follow-up queries, the system directly reuses the specific hourly chunk that
triggered the abnormality alert. This chunk serves as the sole input for the assistant’s explanation,
ensuring consistency between the initial alert and the system’s follow-up interpretation. The details
of this alert-triggering data were described in Section 5.3.3.

Similarly, when a user explicitly requests a broader summary of the entire monitoring period
(e.g., “How was my heart rate today?”), the system retrieves all available chunks for that user
(eight in the simulated dataset, i.e., 8:00-15:59). These are then aggregated and passed to the
generation stage, allowing the assistant to provide a coherent overview of the full day’s heart rate
and activity patterns.

Generation. In the final stage of the RAG pipeline, the system generates a structured prompt by
combining the user’s original query with the retrieved hourly summaries. This prompt is then
passed to a locally hosted large language model (LLM) to produce the final response.

To ensure safe and consistent behavior, the prompt follows a fixed template designed to produce
semantically grounded responses. It includes: (1) the retrieved plain-language summaries, and (2)
explicit instructions to the model, such as: responses must rely solely on the provided summaries,
avoid any form of medical advice, and maintain a clear, empathetic tone suitable for health-related
communication. A complete template and worked example for a specific query type is provided in
Section 5.4.2 (Figure 8). This structure is enforced programmatically to standardize the assistant’s
behavior across queries.

By grounding generation in semantically relevant content, the system reduces hallucination risks
and ensures outputs remain factually aligned with the user’s logged data. This work adopts a vector
similarity—based definition of semantics, where the retrieved summaries serve as the sole input for
the assistant’s explanation, ensuring consistency with the user’s logged context. As an alternative,
ontology-based methods [50], which provide standardized, semantically rich vocabularies for
representing domain knowledge, could be explored in future work to enhance consistency,
interoperability, and contextual understanding in semantic retrieval.

5.4.2 LLM-Based Interpretation and Prompt Design

The large language model employed in this system is LLaMA 3.2 [32], an open-weight model
from Meta’s LLaMA (Large Language Model Meta Al) family. This version was chosen for its
strong performance in instruction-following and reasoning tasks, as well as its lightweight
deployment requirements, making it suitable for local execution without reliance on external cloud
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services or proprietary APIs. This local setup provides greater control over customization and
supports the use of privacy-preserving measures with potentially sensitive personal health
information.

Running LLaMA 3.2 offline also facilitates faster iteration during prompt engineering, allowing
complete control over the assistant’s tone, instructions, and behavioral constraints. To steer the
model's behavior, we employed a structured prompt engineering approach, experimenting with
various formulations to refine the assistant’s role and constraints. The final design embeds strict
rules directly in the prompt to avoid invented values and explicitly references only the log data
provided. These prompts are dynamically generated based on the type of user query and follow a
structure informed by prompt engineering literature [33].

Despite these safeguards, some variability in generated responses persisted due to the probabilistic
nature of large language models. To minimize this, a low temperature setting (0.7) was used during
inference. This value was chosen to balance helpfulness and response coherence, promoting more
stable outputs while maintaining conversational tone. While this configuration helped reduce
hallucination and excessive variation, minor inconsistencies in response length and detail still
emerged, which is especially relevant in health-related contexts where clarity and predictability
are crucial. This variability, although reduced, remains a known limitation and a significant risk in
the deployment of generative models in healthcare, due to the complexity and sensitivity of the
domain.

The system supports four interaction types that determine how context is selected and how the
prompt is framed for the language model:

1) Specific time-based questions: For queries that contain an explicit time reference, the
system retrieves the corresponding hourly summary. As described in Section 5.4.1, this
ensures that the prompt is grounded in a single, well-defined log segment, keeping the
response precise and context-specific.

2) General time-based queries: As outlined in Section 5.4.1, this approach applies when
queries do not specify an exact time but include relative temporal identifiers such as “after,”
“before,” “morning,” or “afternoon.” In these cases, the three most relevant log intervals
are selected and aggregated, providing a broader contextual basis for the prompt.

3) Summary questions: In cases where the user requests a complete overview of the
monitoring period, the system incorporates all available summaries for the day. As
explained in Section 5.4.1, this provides the prompt with a full contextual scope, supporting
day-level synthesis and interpretation.

4) General health and wellness reflections: For wellness-oriented queries that are not
anchored to specific log segments, the system bypasses the structured summaries and
instead prompts the model to generate broader reflections. This mode poses a higher risk,
as responses may draw on the model’s pre-trained general knowledge rather than strictly
on the logged data. To mitigate this risk, the prompt includes explicit safeguards: the model
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is instructed to avoid diagnostic statements, use non-clinical and supportive language, and
frame its outputs as empathetic reflections rather than medical advice.

5) Alert follow-up: In cases where the user refers back to a system-generated alert, the
assistant reuses the specific log segment that initially triggered the warning (see Section
5.3.3, “Alert-triggering data”). Anchoring the response in the same chunk that produced
the alert ensures consistency and transparency. The assistant explains the flagged
abnormality by reporting the heart rate range observed during the alert and situating it
within the corresponding activity context.

The structured prompt used in the generation stage comprises four main components, as
summarized in Table 3.

Table 3. Overview of the main components used in the prompt structure and their specific implementation within the
heart rate assistant system.

Component  Definition Application in This Project

Specifies that the assistant acts as a
personal heart rate assistant, explicitly
excluding any diagnostic or clinical

The task the model is expected to
Instruction  perform, often used to set the
assistant’s identity and boundaries.

responsibilities.
External reference material that Includes summaries of log chunks
Context guides the model toward accurate or  retrieved via semantic search, aligned
relevant outputs. with the user’s data.

The user's prompt, question or
Input Data statement submitted for the model to
respond to.

User’s question, such as a specific
time query or general health concern.

Signals what the assistant should focus
on (e.g., summarizing the day,
explaining an alert, or answering a
follow-up).

A label or signal used to categorize
Output or guide the expected form or scope
of the model’s response.

Figure 8 presents a worked example of the generation step for a time-based query. It demonstrates
how the assistant integrates the retrieved log segment into the system prompt and frames explicit
behavioral constraints. It combines this with the user’s question before sending it to the LLM,
which produces an empathetic, data-grounded response. Additional examples covering the other
prompt cases are provided in Appendix F for completeness.

5.4.3 Conversational Interface

The final layer of the prototype is a user-facing conversational interface built using Streamlit [34],
an open-source Python framework that enables rapid development and deployment of custom web
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applications for data-driven systems. To reproduce this component, install Streamlit via pip install
streamlit, then launch the interface locally using streamlit run app.py. The main script (app.py)
orchestrates both frontend layout and backend logic in a modular pipeline.

This interface acts as the main interaction point between users and the system and includes:

- A dropdown menu to select one of two predefined simulated users (defined in Section
5.3.3).

- A greeting header.

- A free-text input field for user questions.

- A chat-style response area rendered using st.chat_message() to display the assistant’s
answers.

All computation, including input parsing, log retrieval, prompt construction, and LLM response
generation, occurs server-side. The interface remains lightweight and responsive, with Streamlit’s
session_state used to preserve conversational context across queries..

Figure 9 illustrates two example interactions:

o Left panel (Scenario A): The assistant responds to an alert for Bryan, an elderly male
patient with an abnormal profile. It explains a flagged log segment where an elevated heart
rate occurred during inactivity.

e Right panel (Scenario B): The assistant answers a time-specific query for Alessa, a
healthy elderly female patient. It retrieves the relevant log summary and contextualizes
heart rate values in relation to the reported emotional state.

These examples demonstrate how the assistant adapts to both the selected user profile and the type
of query, whether alert-related or time-specific. Additional examples of interaction types and
system responses are provided in Appendix G. The chosen user ID dynamically personalizes
thresholds, simulated log access, and alert logic. This modular and context-aware design supports
reproducibility, ensuring consistent, scenario-specific responses across various interaction types.

While the assistant’s responses are grounded in retrieved heart rate summaries, open-ended or
emotionally framed questions may still trigger interpretive statements that go beyond the available
data. This introduces a risk of subtle hallucinations, especially when the model infers emotional
states or behavioral patterns without direct physiological indicators. Although prompt instructions
are designed to constrain such behavior, this remains a key consideration for future refinement and
is discussed further in Section 8.2.
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Example: Specific time-based query
context = get closest _chunk_by_time(user_minutes, texts, user_id)

response = client.chat(
model="llama3.2",
messages=[
{ nm,.n

"role": "system",

"content": (
"You are a personal and empathetic assistant helping users understand their
heart rate and activity context.

- Do not mention fallback, approximation, or lack of context.

- Do not explain the system behavior.

- Do not guess, generalize, or invent values.

- Assume the context below is the exact match for the user's request. Base your
answer only on that.

- Explain clearly the heart rate range, average, and activity exactly as in the context.
- Never go beyond the provided data.

Context: {context}"
)
b

{"role": "user", "content": user_question},

1,
)

Real Question and Answer

{ user_question }:"What was my heart rate around 11:30? Because I was dizzy"

{ answer }:"I'm so glad you reached out! Feeling dizzy can be really unsettling.
According to your data, at 11: 30 your heart rate was mostly within a range of 72 to 76
beats per minute (bpm), with an average of 75 bpm. It's great you're paying attention
to your body and noticing how it's responding to different activities!"

Figure 8. Example of the generation process for a time-based query, showing how retrieved context, system
instructions, and the user s question are structured and passed to the LLM to generate the final response.
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Select User to Monitor Select User to Monitor

Scenario A: Bryan - Abnormal Heart Rate Patient Scenario B: Alessa - Healthy Patient

.Heart Rate Personal Assistant | ' ' .Heart Rate Personal Assist

Hello Bryan!

Let's talk about your heart rate!

Hello Alessa!

Hi Bryan, your heart rate was elevated around 13:00 today
Let's talk about your heart rate!

is thi 2
What s this Alert about? Your heart rate looks good today, but feel free to ask the assistant if you want to reflect
on anything!

Hi Bryan,

| wanted to follow up with you about your heart rate pattern during inactivity. According How was my heart rate around 11:307 | was quite stressed at that time

to our logs, when you were mostly sitting at 13:00, your heart rate was relatively high,
ranging from 82 to 116 beats per minute (bpm), with an average of 92 bpm.

This elevated heart rate is being flagged because it's above the normal standard for ImY It sounds like your heart rate was relatively stable and calm during that period. Your
someone of your age and demographic. Research suggests that as we age, our resting heart rate ranged from 72 to 76 beats per minute (bpm), with an average of 75 bpm,
heart rate tends to slow down. For a 70-year-old male like you, a heart rate of 90-100 indicating a peaceful and focused state.

bpm at rest is typically considered within the normal range.
Considering you mentioned feeling stressed at that time, it's interesting to see that

However, in this instance, your average heart rate during inactivity was higher than your body didn't reflect that stress as much as expected. This could be a sign that you
what's commonly seen in people of your age group. This could be due to various factors
such as overall health, medication, or lifestyle habits.

found ways to manage your stress or have developed coping mechanisms.

N . X N . Remember to take care of yourself, especially when dealing with stressful situations.
Please keep in mind that an isolated reading doesn't necessarily indicate any underlying

Your body is doing its best to regulate itself, and it's great that you're paying attention
concern. It's always a good idea to monitor your heart rate regularly and discuss any yis doing g g y paying

ions!
concerns with your healthcare provider if they persist. to these signs!

Ifyou have any questions or would like more information about this, feel free to ask! Keep up the good self-care routine, and feel free to share more about how you're

feeling!

" What's your question?
What's your question? aLsy) 1

Figure 9. Two examples from the Streamlit interface: (left) an alert-related interaction where the assistant explains elevated heart rate during
inactivity; (right) a time-specific query where the assistant provides a contextualized summary of heart rate data for the hour inquired. For
simplicity, the interface displays the start time of the hour (e.g., “at 13:00”), although technically the alert and retrieval correspond to the full
hourly window (13:00-13:59).
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5.5 System lIterations and Technical Evaluation Design

This section introduces the three iterative prototype versions, followed by an overview of the
technical evaluation setup and the metrics and datasets used. The actual performance results of the
prototype versions and their interpretation are presented later in Chapter 7.

5.5.1 Prototype Versions

To support both the experimental and user-centered objectives of this research, three prototype
versions (V1, V2, V3) were developed across successive design iterations. These iterations were
informed by internal testing and insights gathered from user interactions, aligning with the two
phases of the user study described in Chapter 6.

Each version explored specific design trade-offs between retrieval scope, interpretability,
faithfulness, and personalization. Together, they laid the foundation for both the user evaluation
(discussed in Chapter 6, which includes aspects such as perceived clarity and trust) and the
technical evaluation, whose results are reported and interpreted in Chapter 7.

e Version 1 (V1), tested during the first phase, implemented timestamp-based chunk
retrieval and rule-based personalization. However, it revealed limitations in conversational
flow, vague responses to open-ended prompts, and a lack of interpretive framing for
retrieved data.

e Version 2 (V2), introduced in the second phase, expanded the scope of retrieval and
adjusted prompt structures to better support general or non-specific queries. While this
increased contextual richness, it also introduced new challenges related to verbosity,
reduced personalization, and inconsistencies in factual grounding.

e Version 3 (V3), deployed in the final phase, incorporated fallback mechanisms, age-based
comparisons, and stricter prompt instructions. These adjustments improved
contextualization and user alignment but introduced challenges in maintaining concise and
factually faithful outputs.

Each prototype thus represents a progressive effort to balance interpretability, retrieval quality,
and safe communication in the context of health data interpretation.

5.5.2 Evaluation Framework

The system was evaluated using the Retrieval-Augmented Generation Assessment (RAGAS)
framework [35], a methodology designed to assess both retrieval quality and generated responses
in RAG pipelines. To ensure fairness, a cross-model setup was adopted in all evaluation cases:
while the assistant itself ran on a local LLaMA 3.2 model, evaluation was performed using Mistral
7B [47] as the external evaluator. This minimized architectural bias and improved the robustness
of the results.
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All three prototype iterations (V1, V2, and V3) were assessed with the RAGAs metrics of context
relevance, faithfulness, and answer relevance to capture how retrieval accuracy, factual
grounding, and response alignment with user intent evolved across versions. These iterations are
more detailed and interpreted in Chapter 7. Following the iteration evaluations, the best-
performing version was selected for baseline comparison against a plain LLaMA 3.2 model
without retrieval. For this step, the assessment was extended to include Factual Correctness (F1
mode), providing an architecture-independent measure of factual overlap.

Together, these complementary metrics measured improvements from iterative refinements in
retrieval logic, prompt design, and context management, as well as answer correctness. They also
enabled a fair assessment of the added value of retrieval compared to baseline models,
complementing the findings from the user study presented in Chapter 6.

5.5.3 Evaluation Metrics and Datasets

The evaluation dataset was constructed using three representative questions designed to capture
the full range of interaction types defined by the prompt framing in Section 5.4.2. These included
time-specific queries, alert-related follow-ups, and general time-based reflections (see Appendix
H for the complete dataset). While this dataset was used consistently across evaluations, in the
baseline comparison, the retrieved context was excluded to isolate the effect of retrieval.

Prototype Iterations Evaluation Metrics. To evaluate the three prototype iterations (V1, V2,
V3), the study applied the RAGAs metrics of:

- Context Relevance: evaluates whether the retrieved log chunks are semantically aligned
with the user’s question. This ensures that the assistant grounds its response in information
relevant to the query, rather than unrelated logs.

- Faithfulness: evaluates whether the generated answer remains factually consistent with
the retrieved context, without introducing unsupported or hallucinated content.

- Answer Relevance: evaluates how well the generated response addresses the user’s
question.

Each evaluation required three elements: the user’s question, the assistant’s answer, and the
retrieved context [34, 35]. An example of a time-based query is shown below:

question = [“How was my heart rate around 11: 30?7 [ was stressed at that time.”|

answer = [ “At 11:30, your heart rate was stable while working. The readings ranged from 84 to
88 bpm, with an average of 86 bpm. Given your age (70) and activity level at that time,

your heart rate is within a healthy range according to European Society of Cardiology
guidelines (60-100 bpm).” |

context = [“At 11: 00, Bryan was mostly work.The heart rate ranged from 84 to 88 bpm,
with an average of 86 bpm.”]
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The evaluation context in this setup is limited to recent log summaries and does not incorporate
user-specific historical trends. For instance, while Bryan’s heart rate is reported as 86 bpm,
clinically within range, the assistant cannot assess whether this is elevated for him personally (e.g.,
if his usual resting rate is closer to 70 bpm). This absence of longitudinal context limits the
assistant’s ability to assess personalized deviations from baseline. A discussion of this limitation
is provided in Section 8.2.

These elements were compiled into an evaluation dataset using EvaluationDataset.from_list() from
the RAGAs Python library. To ensure reproducibility, all evaluations were conducted offline using
Mistral 7B to minimize bias and without reliance on external APIs.

Baseline Comparison. Following the evaluation of prototype iterations, the best-performing
version was selected for baseline comparison. This step measured the added value of the RAG
pipeline by comparing it with a plain LLaMA 3.2 model without retrieval, setting the context
parameter as an empty list (context = []). For this evaluation, the Factual Correctness (F1 score)
was implemented alongside answer relevance.

The F1 score measures factual overlap between system output and reference answers, combining
precision (proportion of correct statements generated) and recall (coverage of relevant reference
statements) into a harmonic mean [31, 37, 40]:

2 X Precision X Recall
Fl=

Precision + Recall

This provided an architecture-independent metric, ensuring a fair comparison between retrieval-
augmented and non-retrieval models. To ensure reproducibility, the implementation followed the
naming conventions of the RAGAs Python library:

metrics = [ContextRelevance(), Faithfulness(), ResponseRelevance(), FactualCorrectness()
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Chapter 6
User Study

To evaluate how LLM-based conversational interfaces can support patient understanding of heart
rate data in the context of Digital Twin systems, a user study was conducted under Ethical
Application #251615 of the Ethics Committee Computer & Information Sciences at the University
of Twente and under Study Protocol IM-NL-SP-2025-0011 approved by imec’s internal ethics
review process. The study addressed two research questions: (1) How can LLM-based
conversational interfaces facilitate patients’ comprehension and interaction with health data from
Digital Twin systems? (2) What are the risks and limitations of using LLM-based conversational
interfaces in Digital Twin systems, and how do these affect patients’ trust and engagement with
their health data?

The user study aimed to validate both the performance and user experience of the proposed
conversational assistant for heart rate interpretation within a Digital Twin system. Conducted in a
controlled laboratory setting, the study simulated interactions based on a predefined elderly user
profile representing an older adult without medical expertise, to assess whether the assistant could
deliver clear, personalized, and supportive explanations.

This chapter describes the participant criteria, study methodology, ethical considerations,
prototype iterations tested, and the analysis of qualitative and quantitative results.

6.1 Participants

Participants were recruited internally at imec Netherlands via an internal mailing list and personal
invitations. Recruitment materials outlined the study purpose, eligibility criteria, and voluntary
participation. No incentives were offered.

6.1.1 Participant criteria

e Inclusion: Adults 18+ years, employees under an imec-Netherlands contract, proficient in
English, comfortable with digital assistants, willing to consent to participation and audio
recording.

e Exclusion: Individuals with cognitive impairments or an inability to understand the task
or provide informed feedback.

6.1.2 Sample Size and Distribution
The study included a total of nine participants, divided across two phases. In the exploratory phase,
three participants each completed a single session, and the main evaluation phase involved six

participants, each completing two sessions spaced one week apart. This design allowed for the
assessment of system improvements over repeated interactions while minimizing participant
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burden. It also helped evaluate participants’ comprehension, interaction, and how these affect their
trust and engagement with health data.

6.2 Study Phases

To structure the user study effectively, the process was divided into two main phases: an
exploratory phase and an evaluation phase. The exploratory phase focused on early usability
testing of Prototype Version 1 with three participants, while the evaluation phase introduced
Versions 2 and 3 to six new participants. Each phase followed a structured protocol involving
scripted scenarios, participant interaction, and feedback collection. The iterative findings that
emerged are discussed in greater detail in Section 7.1, which analyzes system performance and
user experience across versions.

6.2.1 Exploratory Phase

This one-week phase aimed to identify usability issues and improve clarity in the early version of
the assistant. Three participants each took part in a single 50-minute session that included:

e 5S-minute session for signed consent and introduction.

e 30-minute session of continuous interaction covering two scenarios (abnormal heart rate
alert and normal heart rate).

e [5-minute semi-structured interview to collect feedback.

This phase was essential for capturing initial limitations and informing the design of the next
iteration.

6.2.2 Evaluation Phase

This two-week phase engaged six different participants to assess the assistant’s refinements in
Versions 2 and 3. Participants attended two sessions spaced one week apart:

a) Week 2: A 50-minute session that included a 5-minute consent and introduction, a
30-minute interaction with prototype Version 2 covering both scenarios, aimed at
identifying usability improvements from the first iteration, and 15 minutes for a
semi-structured interview, which was audio recorded with prior participant
permission.

b) Week 3: a 50-minute session that involved a 40-minute interaction with prototype
Version 3, including both scenarios, focused on evaluating improvements made
over the second iteration (week 2), and lastly, 10 minutes for a digital questionnaire.

6.3 Tasks and Scenarios
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For each prototype session, we created different scenarios with the same structure, patient
demographics, roles, situation, and study considerations. However, each had a unique sequence of
questions tailored to the insights we aimed to gather (see Appendix A).

6.3.1 Scenario A: Abnormal Heart Rate Alert

In this scenario, the participant took the role of an older adult without medical or technical
experience. The assistant started the interaction by notifying the user about an elevated heart rate:

"Hi user, your heart rate was elevated around 13:00 today."

The suggested sequence of actions required the participant to press the button to get a summary of
the alert and then ask follow-up questions to understand better why the value was flagged, whether
other abnormalities were present, and how it compared to normal heart rate ranges. The assistant’s
role was to explain these trends clearly and factually in simple language, without offering medical
advice.

6.3.2 Scenario B: Healthy Heart Rate

In this scenario, the participant acted as an older woman reviewing her daily activity without
receiving alerts, but seeing this command in the interface, inviting the user to start the interaction:

"Your heart rate looks good today, but feel free to ask the assistant if you want to reflect on
anything!".

The suggested sequence of actions encouraged the participant to ask the assistant about stable heart
rate values, averages at specific times, or general reflections (e.g., stress or relaxation was reflected
in the data). The assistant’s role was to provide summaries of normal trends, reassure the user
about typical values, and maintain an approachable, non-clinical tone.

6.4 Data Sources
6.4.1 Data Types

- Observational Notes: Manually recorded annotations of participants’ on-task behaviors
and verbal reflections during “think-aloud” sessions captured indicators like hesitation,
timing of follow-up questions, perceived confusion, and reactions to system responses.
This qualitative dataset was digitized and anonymized, serving as contextual evidence
alongside interaction logs and interview transcripts to identify usability challenges,
engagement, and areas for prototype refinement.

- Semi-structured Interviews: The interview questions followed a guided approach with
ten open-ended questions (see Appendix B), ensuring consistency across participants while
leaving room for personal experiences and unexpected insights. This format allowed
participants to elaborate on moments of clarity, confusion, or trust, provide suggestions for
system improvement, and share how supported or uncertain they felt during the interaction.
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- Audio Recordings: Interviews were recorded using a smartphone microphone. The
recordings allowed accurate transcription and analysis, maintaining data integrity.

- Questionnaire: The usability questionnaire combined a 5-point Likert scale with open-
ended questions (see Appendix C), providing both quantitative scores and qualitative
insights. The Likert items were informed by the principles of the Chatbot Usability
Questionnaire (CUQ) and Bot Usability Scale (BUS-11), focusing on communication
clarity, tone, trust, and role consistency. Open-ended questions asked participants to reflect
on helpful aspects, areas for improvement, and comfort using the system independently, to
identify improvements between interactions.

- Interaction Logs: Structured transcripts of the entire dialogue between participant and
assistant include timestamps, system events, and anonymized user inputs and responses in
chronological order. This dataset offers a detailed record of how the assistant processed
queries and generated outputs, aiding analysis of system performance, response accuracy,
and flow.

6.4.2 Data Collection

Interviews were audio-recorded with a smartphone with prior consent, transcribed using
TurboScribe, and the recordings were deleted immediately after. Transcripts were exported and
archived offline as PDF files. Questionnaire responses were gathered through Google Forms, then
exported and saved offline as Excel and PDF files. Observational notes were digitized after each
session and saved with the dataset. User—assistant interaction logs were automatically captured
and saved offline as structured PDF files (user queries, system responses, timestamps, fallbacks).
All materials were anonymized and stored securely on a password-protected device for analysis.

To protect participant confidentiality, all logs were stored offline on a password-protected device,
and no data were transferred online or shared externally.

6.5 Ethical Considerations

Participants gave written consent after receiving a Subject Information Sheet (SIS), which outlined

the study’s purpose, procedures, risks, data handling, and participant rights (see Appendix D for
full details).

6.6 Study Procedure

The study followed a usability testing framework [30], applied during both the exploratory and
evaluation phases, and structured into the following steps:

Step 1: Session Setup. Each study session occurred in a meeting room where a laptop was

prepared with the heart rate assistant ready. Before participants arrived, the researcher debugged
and tested the prototype to prevent technical issues.
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Step 2: Informed Consent Sign. Participants received the printed version of the Subject
Information Sheet (Appendix D) outlining the study’s purpose, procedures, data practices, risks,
and rights, including the right to withdrawal at any time. The researcher explained this verbally,
answered questions, and obtained signed consent before starting the session.

Step 3: Task Scenarios Execution. Printed papers with scenarios were provided, including
descriptions of realistic use cases and tasks to follow. Participants engaged in two scenarios: A)
Abnormal heart rate alert; and B) Healthy monitoring query. To minimize order effects, the order
was counterbalanced: half of the participants started with one scenario type, the other half with the
opposite.

Step 4: Interaction Logging. After each scenario interaction, the researcher saved
anonymized user inputs, system responses, timestamps, and fallback triggers. These logs were
exported and stored as PDF files for later analysis.

Step 5: Observational notes. Participants performed both tasks while the researcher observed
and took notes.

Step 5: Post-Interaction Interviews. After each first interaction in both exploratory and
evaluation phases, participants completed a semi-structured interview (Appendix B), which was
audio-recorded with their prior approval.

Step 6: Post-Study Questionnaire. This step was only conducted after the final session
involving Prototype Version 3 (Week 3 in the Evaluation Phase). Participants completed a Google
Forms questionnaire (Appendix C) to evaluate various aspects of the interface, system responses,
and the overall study.

Step 7: Data Handling and Usage. Observation notes, transcripts, and logs were stored
securely offline and used exclusively for research analysis.

Step 8: Study Closure and Follow-Up. After completing the data collection, participants were
thanked for their time and contribution. The researcher briefly summarized the next steps of the
study and explained how the collected data would be used. Contact details were provided to
participants who expressed interest in receiving updates about future prototype versions or the
study results.

6.7 Qualitative Results

To analyze the qualitative data, a thematic analysis was conducted on the interview transcripts.
The aim was to identify recurring patterns in participants’ perceptions of the conversational
assistant and link them to the two research questions systematically. All transcripts were imported
into Atlas.ti and coded using descriptive and in vivo coding, allowing participants’ quotes to enrich
the analysis.

Initial codes were grouped into shared categories based on thematic similarities and their relevance

to either system behavior or user perception. Through an iterative clustering process, these were
refined into six overarching themes that were not only frequently mentioned but also conceptually
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aligned with the study’s two research questions. The chosen themes reflect critical aspects of the
user experience with conversational agents in healthcare contexts, including how clearly the
assistant communicates, the level of detail provided, the trustworthiness and consistency of the
responses, and how users emotionally respond to the system. These themes are:

1) Clarity and Comprehensibility

2) Level of Detail

3) Trust and Transparency

4) Role Consistency

5) User Experience and Emotional Impact

6) Improvements and Features

Importantly, these themes were derived from interviews conducted in both the exploratory and
evaluation phases, ensuring that the analysis captured perspectives across multiple stages of system
evolution. These categories were not mutually exclusive but reflected distinct focal points in the
user feedback. For instance, a single participant comment might express both emotional
reassurance (Theme 5) and concerns about inconsistent behavior (Theme 4). The first five themes
offer structured insights into participants’ comprehension, trust, and engagement with the assistant,
addressing the research questions. The Improvements and Features theme, in particular, provided
concrete suggestions for system enhancements and directly influenced the following prototype
versions. These iteration findings are discussed in Section 7.1

Figure 10 offers a visual summary of the frequency and distribution of coded feedback themes
across all participants. The height of each stacked bar represents the total number of coded
segments per participant, reflecting the overall richness and volume of qualitative input provided
during the interviews. The color segments within each bar correspond to the six identified themes,
illustrating not only what was said, but also where each participant placed emphasis in their
feedback.

For example, Participant 1, involved in the exploratory phase, shows the highest overall number
of comments, with particularly large contributions to Clarity and Comprehensibility and User
Experience and Emotional Impact. This suggests a participant who was highly expressive and
reflective about the system's communication style and transparency, offering rich, descriptive
feedback on how information was delivered and perceived. However, Participant 1 contributed
relatively less to Improvements and Features, implying that while they were deeply engaged in
interpreting the assistant’s behavior, they provided fewer concrete suggestions for system
refinement, possibly due to the early-stage nature of the prototype.

In contrast, Participant 7, who participated during the evaluation phase, focused more on Trust and
Confusion and provided fewer comments related to User Experience and Emotional Impact. This
shift may reflect the increased complexity of the second prototype version, which, while more
feature-rich, may have introduced ambiguity or uncertainty around system reasoning.
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Consequently, the participants’ feedback concentrated on how much they trusted the assistant’s
outputs, rather than their emotional response or engagement level.

This variation across participants reinforces the value of including both expressive and concise
users in qualitative studies. While some participants helped surface broader comprehension and
trust-related challenges, others offered focused, actionable feedback that directly supported
iterative system improvements.

Codes o
® > Clarity & Comprehensibility — 4
® > Improvements & Features = 22
® O Level of Detail — 28
L] Role Consistency — 23
® < Trust & Confusion — 29
® > User Experience & Emotional Impact e 30
Code Distribution by Document Preview Charts

Participant 1 - Transcript.docx
Participant 2 - Transcript.docx
Participant 3 - Transcript.docx
Participant 4 - Transcript.docx
Participant 5 - Transcript.docx
Participant 6 - Transcript.docx
Participant 7 - Transcript.docx
Participant 8 - Transcript.docx

Figure 10. Distribution of the six identified themes across participants in both
Exploratory and Evaluation phases generated in Atlas.ti.

Participant 9 - Transcript.docx

6.7.1 Thematic Analysis

This coding process was used in both the Exploratory and Evaluation Phases to compare changes
in perception as the prototype evolved. To gather insights on how LLM-based conversational
interfaces can improve patients’ understanding and interaction with health data, we proposed two
themes:
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® Clarity and Comprehensibility. This theme emerged because participants frequently
evaluated whether the assistant’s responses were understandable. Codes such as “clear,”
“easy to follow,” and “not aligned with the question” highlighted the centrality of clarity
in shaping comprehension. Early misalignments were noted, as Participant 2 in V1
mentioned: “It is not clear apart from the heart rate numbers, without context, I don’t feel
it’s clear enough.” In a later iteration, issues shifted toward conversational continuity, like
Participant 8 remarked: “I can understand the answers, but sometimes I felt they were
contradicting, probably because there is no connection in the historical conversation.”

®  Level of Details. The amount of detail was perceived differently by participants. While
some valued longer, more comprehensive outputs, others felt overloaded by repetition. For
example, Participant 1 in V1 appreciated the richness: “There is a lot of detail, and it feels
like talking to someone present, caring for and supporting you during this.” In contrast,
Participant 3 in V2 described the experience as overwhelming: “The repeated information
made me feel overwhelmed.” This divergence revealed a tension between
comprehensiveness and conciseness.

Similarly, to identify the risks and limitations of using LLM-based conversational interfaces and
how these affect trust and engagement, the following themes were derived:

® Trust and Confusion. Several codes clustered around concerns with “vague,”
“contradictory,” or “uncertain” responses. The need for source clarification (logs vs.
general knowledge) was repeatedly noted, making confusion a core dimension of perceived
trustworthiness. In V1, confusion arose from misleading outputs. Participant 2 observed:
“l asked to further look into my well-being, and it sticks to the dataset, so that’s
misleading”. Similarly, participant 3 reported: “When I referred to my age, it understood it
as a time”. In V2, trust was compromised in different ways. Participant 9 reflected: “I find
it hard to trust if it did not answer my question. It felt like it wasn’t paying attention to me”.
Participant 4 also highlighted the lack of transparency: “When I asked how it got my data,
1 think there should be some prepared answer. The heart rate calculation should already
have some background or contact information available for the system to reply”. Together,
these comments reveal that while participants valued accuracy, their trust ultimately
depended on the system's ability to provide clear, consistent, and transparent responses.

29 ¢

® Role Consistency. Codes such as “not diagnosing,” “referring to a doctor,” and “not
clinical advice” appeared across multiple transcripts. Participants emphasized that the
assistant maintained a clear boundary by not presenting itself as a medical professional.
For example, Participant 5 in V2 noted: “It did not try to make any suggestions about my
health status; it always suggested going to a qualified healthcare professional, so that is
good.” Similarly, Participant 7 remarked: “Yes, to me that is clear, the system is very safe
in not acting as a medical professional.” Participant 9 confirmed this perception: “It is not
acting as a medical professional. Regarding this, it’s quite consistent.” This reinforced the
assistant’s framing as a supportive tool rather than a diagnostic authority, a role boundary
that participants valued for safety and trust.
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® User Experience and Emotional Impact. Participants consistently noted that the
interaction flow and emotional tone influenced their engagement. Codes such as
“supportive,” “non-alarming,” and “not connecting” coalesced into this theme,
highlighting the dual role of reassurance and frustration in the user experience. In Version
1, Participant 1 reflected positively: “Very convenient to have someone to chat about your
health. I think especially for older people this could be helpful”. In Version 2, participants
provided both supportive and critical feedback. Participant 4 appreciated the system’s
reassurance: “I like that when I specified that I didn’t understand the answer, it assured me
that it’s easy to find it all overwhelming. That made me feel supported in my lack of
knowledge.” Similarly, Participant 7 emphasized the importance of role boundaries: “/ felt
safe that the system was not trying to play the doctor.” However, frustrations also emerged,
as Participant 5 noted: “It was a distant conversational partner. Sometimes it didn’t read
my question correctly and gave me answers that did not match my questions.”

Participants suggested refinements for the prototype, organized under a theme to improve usability
and engagement across iterations and the user study, offering valuable insights.

Suggestions and Features. This theme was not directly tied to the research questions but
emerged from participant proposals coded as “suggestion,” “improvement,” or “feature
request.” These inputs reflected personal preferences and were tracked separately to guide
iterative development of later prototypes. In Version 1, participants emphasized the need
for shorter and more accurate responses. For example, Participant 2 suggested: “The system
can be extended to other contexts outside heart rate; people want to know more about
health in general.” Similarly, Participant 3 recommended, “Have a bigger dataset or a
more critical scenario to see how it behaves.” In Version 2, suggestions focused on linking
answers more explicitly to evidence and keeping responses concise. Participant 6 noted:
“Link the answers to evidence,” while Participants 8 and 9 both requested “shorter
answers.”

6.7.2 Findings by Study Phase
Exploratory Phase

During the exploratory phase, participants interacted with the first version of the prototype
(described in Section 5.5.1), which highlighted issues of clarity, repetition, and conversational
fragmentation. While the assistant’s neutral tone was perceived as reassuring and its role
boundaries were clear (i.e., not acting as a medical professional), participants frequently
encountered contradictory outputs when referring to standard heart rate ranges and limited memory
across exchanges. The assistant struggled with broad or open-ended queries, often defaulting to
narrow, log-based responses that lacked personalization (see Appendix I, Example 1). Preferences
for the level of detail varied significantly: while some users valued factual brevity, others desired
more explanatory or contextualized responses. Participants also proposed design enhancements,
such as a flexible response length (allowing users to decide), a larger font size, and improvements
to conversational continuity.
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Evaluation Phase

Participants engaged with the second prototype version (described in Section 5.5.1), where
improvements such as broader context retrieval, refined tone, and personalization were tested.
Feedback suggested improvements in clarity, role consistency, and a general increase in perceived
trustworthiness, as some users appreciated the contextualized explanations and the assistant’s
consistent role boundaries. However, this improvement in trust was not universal. Some
participants continued to express doubt about how the assistant generated its responses,
particularly when the source of the information (log data vs. general knowledge) was unclear
(Appendix I, Example 2). This reflects an important distinction between faithfulness (i.e., whether
the assistant’s outputs matched the retrieved data) and perceived trustworthiness (i.e., whether
users felt they could rely on those outputs). In other words, even when the assistant was technically
accurate, trust was compromised when the assistant did not disclose the source of the information
or how it was generated.

Table 4 illustrates how the six themes were identified across both study phases, highlighting the
particular challenges addressed in the second version and the new ones that emerged following the
improvements. While the thematic analysis focused on the exploratory (V1) and evaluation (V2)
phases, additional findings from Version 3 (V3) are discussed in Section 6.7.3, based on
quantitative user ratings and open-ended survey feedback. These insights build on the thematic
trends identified here and provide additional validation of the design iterations. The comparison
highlights both continuity and change, reflecting how participants’ perceptions evolved as the
prototype developed.

Table 4. Themes across exploratory and evaluation phases (V1 and V2), based on qualitative data analysis, addressed
challenges, newly emerged issues over iterations, and the evolution of participants’ perceptions.

Theme Exploration Phase Evaluation Phase

Clarity and Repetition and contradictory More contextualized answers and age-based

Comprehensibility statements confused users comparisons, some users still found

explanations too repetitive.

Level of Details Mixed preferences: brief and factual Meaningful but short explanations were
answers versus detailed explanations provided, not informative enough

Trust and Contradictions and lack of clarity Some trust gained through contextualized

Confusion about answers source. demographic comparisons, but doubts remained

about source transparency

Role Consistency

Boundaries were clear with referrals
when needed

Consistency reinforced with supportive but
non-clinical framing

User Experience
and Emotional
Impact

Neutral, non-alarming tone valued;
however, lack of conversational
memory, fragmented interactions

More natural dialogue and supportive tone as
strengths, but still noted gaps in memory and
flow

Suggestions and
Features

Flexible response lenght, larger font
size, and conversational memory

Multimodal outputs (graphs, voice), stronger
memory, and more personalized comparisons
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6.8 Quantitative Results

This section presents the findings obtained through a post-interaction questionnaire and open-
ended reflections, administered via a Google Form link after participants interacted with Prototype
V3 (described in Section 5.5.1) during the second evaluation session.

6.8.1 Likert-Scale Questionnaire Analysis

To complement the qualitative findings, descriptive statistics were calculated from the
questionnaire responses. Four participants (N = 4) completed the Likert-scale (1-5, strongly
disagree — strongly agree) questionnaire, which assessed perceptions of the assistant’s clarity,
supportiveness, confidence in use, interpretability, naturalness, perceived safety, and
improvements across prototype iterations.

Following common HCI and usability research conventions, means and standard deviations (SD)
are reported to summarize overall trends, especially when small sample sizes are present, as 5-
point Likert items are treated as interval data for practical purposes [51]. However, to respect the
ordinal nature of the scale, where the numeric intervals between categories (1 — 2 may not be
perceived as the same “size” as 4 — 5), median and interquartile range (IQR) were included to
reflect non-parametric distribution summaries. This dual reporting provides a more complete
summary while accounting for non-parametric characteristics.

Table 5 presents the descriptive statistics of participants’ evaluations. These quantitative insights
support and help contextualize the qualitative themes discussed in Section 6.7.

Table 5. Descriptive statistics of four participants’ Likert-scale evaluations (N = 4). The table presents participants’
assessment of the conversational assistant across clarity, supportiveness, confidence in use, interpretability, naturalness,
safety, and improvements over prototype iterations.

Questionnaire Dimension Mean SD Median IQR
Response clarity 4.25 0.50 4.0 0.25
Supportive tone 5.00 0.00 5.0 0.00
Confidence in use 4.25 0.50 4.0 0.25
Interpretation support 3.75 0.96 3.5 1.25
Naturalness of interaction 4.25 0.50 4.0 0.25
Communication improvements 4.75 0.50 5.0 0.25
Responsiveness to feedback 4.50 0.58 4.5 1.00
Role safety (no diagnosis) 4.75 0.50 5.0 0.25
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6.8.2 Open-Ended Questions Analysis

In addition to the Likert-scale items, the post-interaction questionnaire administered during the
second evaluation session included a series of explicit open-ended questions. These were designed
to elicit reflective feedback from participants after engaging with Prototype V3. Responses were
submitted through the same Google Form, serving to contextualize participants’ evaluations and
offer more nuanced insights into their experiences with the final version of the system and their
expectations for future improvements. A thematic analysis of these structured responses revealed
both strengths and limitations in the assistant’s design, highlighting the following themes of
Interest:

Helpful aspects of the assistant

Participants appreciated contextualized communication, particularly the ability to compare heart
rate values with peers of the same age group and to explain the seriousness of alerts. Others
highlighted the assistant’s role in providing insights and recommendations for health maintenance,
noting its usefulness as an Al agent focused on heart rate—related issues.

’

“The assistant provided context to its communication.’
- Participant 7

Confidence in future use

Most participants indicated they would feel comfortable using the assistant independently, citing
its ease of use and helpfulness in interpreting heart rate data. However, concerns emerged
regarding the generality of healthcare recommendations and privacy. One participant emphasized
that comfort depended on assurance that personal data and conversations would not be shared
externally.

“I would feel comfortable using an assistant like this one as long as my data, prompts, and
conversations would stay with me.”
- Participant 7

Perceived improvements between versions

Participants in this session interacted with earlier versions (V1 and V2) during the exploratory and
evaluation phases. Their comments reflected clear improvements in Prototype V3, including more
consistent data presentation, better alignment between time and age, and reduced verbosity.

“The latest model can contextualize the answer. This makes me trust the model more
because it gives more useful information.”
- Participant 9

Additional suggestions

Feedback pointed to conversational flow as a significant area for refinement. Participants reported
that the assistant sometimes failed to account for previous inputs, struggled with clarity when units
were unspecified, or produced overly long responses. Suggested enhancements included enabling
more profound exploration of personal data (e.g., history, trends, lifestyle influences), supporting
multimodal interaction, and ensuring outputs remain concise and specific.
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“It should have a better flow of conversation. It seems not to be aware of the latest
question it was asking me.”
- Participant 6

General impressions

Overall feedback was positive. Participants valued the presentation of heart rate data, describing
the system as “helpful” and “nice.” They also expressed interest in its local implementation and
application of RAGs in a sensitive health domain. At the same time, they emphasized the
importance of keeping the assistant’s scope limited to its defined health-related role and of
ensuring communication remains specific and trustworthy.

These findings contribute to answering the research questions by offering concrete evidence for

each. For RQ1, they highlight design features that enhance patient understanding and interaction.
For RQ?2, they illustrate the conditions under which trust and engagement may be compromised.
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Chapter 7
Results Interpretation

This chapter presents a comprehensive interpretation of both the technical evaluation and user
study findings across the three prototype iterations previously introduced in Chapters 5 and 6. Each
version reflects a progressive evolution in retrieval logic, prompt strategy, and personalization
design, shaping how the assistant communicated health-related insights. By integrating structured
evaluation metrics with qualitative user feedback, this analysis highlights how each prototype
influenced perceived trust, clarity, and interpretability. It also brings forward key trade-offs
between retrieval faithfulness and supportive explanation, which emerged during the design
process.

Additionally, this chapter presents the results of a post-hoc evaluation using enhanced contextual
summaries, conducted following the user study. This extension aimed to investigate the limitations
of the retrieval strategy employed during development, particularly the model’s ability to ground
its answers in enriched, semantically meaningful input. Since users did not interact with the
enhanced contexts during their participation, this evaluation provides a technical validation layer
rather than user-informed insights.

Finally, the chapter includes a baseline comparison between the top-performing prototype (without
enhanced context) and a non-RAG version of the model (LLaMA 3.2 without retrieval), offering
a clearer view of the value added by integrating contextual evidence.

7.1 Prototype Iterations Findings

This section analyzes how the assistant evolved based on both technical metrics and user feedback,
with a focus on the three core prototype versions introduced in Section 5.5.1. The analysis aims to
understand which design decisions improved the system’s interpretability and which introduced
new challenges. Each iteration addressed specific issues identified in earlier versions, such as
retrieval logic, prompt clarity, and alignment with user intent.

By combining the RAGASs' evaluation metrics context relevance, faithfulness, and answer
relevance with user perceptions gathered in Chapter 6, the analysis reveals how each version
influenced participants’ trust, clarity of interaction, and perceived usefulness. This section also
surfaces the limitations and trade-offs that guided future refinements, including the tension
between factual precision and user-centered communication.

Table 6 summarizes the evaluation results using the original retrieval configuration, providing a
foundation for comparing how system behavior evolved across iterations.
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Table 6. RAGAs evaluation scores for three prototypes (V1, V2, V3) using original contexts, comparing performance in
Context Relevance, Faithfulness, and Answer Relevance.

Prototype Version Context Relevance Faithfulness Answer Relevance
HR Assistant (V1) 0.0000 0.3750 0.5282
HR Assistant (V2) 0.0000 0.4167 0.5063
HR Assistant (V3) 0.0000 0.2000 0.5321

7.1.1 Iteration 1: Establishing the Baseline

The first version (V1) served as a foundational proof of concept, incorporating timestamp-based
chunk retrieval and basic rule-based personalization. RAGAs metrics revealed moderate
faithfulness (0.3750) and answer relevance (0.5282), but (0.0000) context relevance, confirming
that raw summaries lacked sufficient semantic grounding to support strong alignment.

User feedback reflected a mismatch between the system’s technical grounding and the clarity of
its responses. Participants described outputs as verbose, repetitive, and fragmented, with
contradictory statements about standard ranges surfacing when the assistant struggled to reconcile
multiple retrieved values. Importantly, the assistant’s neutral tone reassured users that it respected
its boundaries and did not attempt to act as a medical specialist. Despite these limitations,
participants acknowledged that the assistant made their heart rate data easier to follow than reading
the logs directly. Several also valued its interpretive framing, which helped contextualize raw
numbers without overstepping into diagnostic territory.

This version highlighted the core challenge of iteration: the technical ability to ground responses
did not automatically translate into clear interpretation. For example, as illustrated in Figure 11,
when users asked open-ended questions like “What’s the heart rate value for a person of my age?”,
the assistant often retrieved the last-used chunk but failed to provide a direct or demographically
personalized answer. These limitations underscore the need for improved conversation flow, more
precise explanations using age-based benchmarks, and mechanisms to handle broader or
ambiguous queries without defaulting to overly narrow, log-focused outputs. At the same time, the
prototype already demonstrated potential to provide supportive, non-clinical value, laying the
groundwork for subsequent refinements.

7.1.2 Iteration 2: Refining Contextualization

The second iteration addressed the limitations observed in Version 1 by introducing broader
retrieval strategies and refining the prompt structures to accommodate more open-ended time
references, resulting in prototype Version 2. A key design change was the expansion of retrieval
scope: the assistant should now return three chunks per query when needed, aiming to support
questions referencing broader timeframes such as “later” or “before” instead of strictly matching
a single hour. This change aimed to enhance contextual understanding and enable the assistant to
respond to more flexible temporal queries with relevant background information. However, the
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system did not consistently interpret these vague time expressions as intended. In many cases, it
still defaulted to retrieving a single chunk based on the most clearly detected hour, rather than
retrieving adjacent summaries to cover a broader range. For instance, as shown in Figure 12, when
users asked questions like “What happened after the alert? Did my heart rate get better?”, the
assistant acknowledged the ambiguity but still provided a narrow response, failing to retrieve
adjacent chunks that could answer the full question scope.

Technically, while context relevance remained at 0.0000, still reflecting the strict standards of the

Mistral-based evaluator, faithfulness improved (0.4167), likely due to reduced hallucination from
using a narrower context. At the same time, answer relevance decreased (0.5063), since the
assistant’s responses were often too narrow for the intended timeframe. This outcome highlights a
critical trade-off: limiting retrieval scope can enhance factual grounding, but it may misalign the
response with the broader user intent. Despite the use of structured prompts and a low LLM
temperature (set to 0.7 in the prototype to encourage conversational yet stable responses), some
variability in the generated output persisted, occasionally affecting the length or level of detail.
While this inconsistency was minor in terms of answer content relevance, it nonetheless
underscores a broader challenge in applying generative models within health contexts, where
predictability, clarity, and user trust are paramount.

Qualitative feedback gathered during this phase of the user study highlighted that the assistant was
perceived as informative, neutral in tone, and capable of contextualizing alerts and clarifying their
meaning, especially through age-based comparisons and trend framing. For example, instead of
simply reporting a high heart rate, the assistant explained whether the value was abnormal for the
participant’s profile and the relation to the activity. Participants appreciated that the system helped
them interpret alert severity and understand heart rate values in more meaningful ways. While
concerns remained around verbosity, limited personalization, and weak continuity in follow-up
exchanges, most users continued to describe the assistant as a helpful tool, particularly for
interpreting logs rather than providing clinical advice.

Overall, Iteration 2 exemplified the trade-offs introduced by expanding retrieval: while the
assistant’s responses became more contextual and better suited to general health questions, both
the technical metrics and user insights revealed persistent issues with conciseness, personalization,
and conversational flow. This iteration reaffirmed the complexity of balancing broader
contextualization with factual precision, while also reinforcing the importance of maintaining the
assistant’s non-diagnostic, supportive role.

7.1.3 lteration 3: Personalization and Trade-offs

Iteration 3 introduced demographic-aware personalization alongside an even broader retrieval
strategy. For this version, the system successfully aggregated summaries, including Morning,
Midday, Afternoon, and Day Overview, using the available heart rate data. These summaries
required retrieving three chunks at once, and in the case of a full-day query, up to eight chunks.
The intent was to offer more user-aligned answers, particularly in cases involving high heart rate
alerts or broader-context health reflections. As shown in Figure 13, the assistant was able to deliver
a well-structured daily summary that included a timestamped table of activities and heart rate

66



values, followed by observations highlighting stability and occasional peaks, demonstrating the
improved interpretability of the final prototype.

This design decision directly impacted technical results: answer relevance rose to 0.5321,
suggesting that responses were still perceived as reasonably informative and aligned with the query
intent, even if not strictly faithful to the retrieved data. While the context relevance stayed at
0.0000, reflecting Mistral's strict evaluation standard when contextual overlap is not verbatim
reproduced in responses. However, faithfulness dropped sharply to 0.2000 as the model struggled
to reproduce every detail in large contexts, a low score, especially for health systems relying on
factual accuracy. While avoiding hallucinations and clinical claims ensured safety, it limited the
ability to reflect all retrieved facts verbatim. Processing more chunks increased information load,
raising expectations for completeness and risking omission or rephrasing of critical details.

Although according to RAGAs, there was a drop in faithfulness, in practice, factual elements such
as average heart rate, ranges, and logged activities were consistently accurate in the answers. The
challenge was in capturing the broader descriptive content of multiple chunks, which often resulted
in longer, more scattered responses that could not concisely mirror the relevant information. This
trade-off highlights a key tension in retrieval-augmented systems: expanding context enhances
interpretive value for users but reduces strict fidelity to the retrieved logs in their exact form.

This challenge is not only technical but also semantic. When synthesizing multiple chunks, the
assistant must reconcile overlapping concepts and expressions that may differ slightly in meaning
across logs. Semantic ambiguities can emerge, particularly in cases involving vague terms like
"normal," "high," or "alert," which may shift subtly depending on the source chunk. In health-
related systems, such variations can affect user interpretation, making semantic precision as
important as factual correctness. While this version of the assistant aimed to reduce such risks
through logic-based query handling, grouping similar expressions under shared intent categories
to minimize ambiguity, there remains an inherent risk of newly emerging or context-specific terms
that may not be fully captured, highlighting the ongoing need for adaptive semantic handling in
future iterations.

Questionnaire results show participants rated the assistant positively across most areas. The highest
score was observed for Supportive tone (M = 5.0, SD = 0.0), where M refers to the mean score
and SD to the standard deviation, indicating unanimous agreement that the assistant communicated
in a respectful and supportive way. Similarly, perceived safety (M = 4.75) was evaluated very
positively, reflecting trust in the assistant’s boundaries and recognition of progress across
prototype versions. While Communication improvements (M = 4.75) and Responsiveness to
feedback (M = 4.50) were similarly assertive, suggesting that participants noticed changes in the
assistant’s behavior based on prior suggestions. Clarity of responses, Confidence in use, and
Naturalness of interaction, each with (M = 4.25), showed that participants generally experienced
the system as straightforward, usable, and realistic, though not without minor limitations. By
contrast, Interpretation support received the lowest mean score (M = 3.75, SD = 0.96), indicating
variation in how well participants felt the assistant helped them understand their heart rate data.
Taken together, the results suggest that the last assistant iteration (version 3) was perceived as
supportive, safe, and progressively improving; however, it still requires refinement in delivering
explanations and interpretive guidance.
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Open-ended comments further reinforced this ambivalence. Participants welcomed features like
age-based benchmarks and clearer alert framing, but also pointed out gaps in memory, conciseness,
and conversational flow. Nevertheless, this was the first iteration where users consistently
described the assistant as trustworthy, supportive, and practically helpful in contextual
communication on their heart rate data. In short, Iteration 3 was seen as more supportive,
contextual, and trustworthy, but less factually precise. Comments praised design features like age-
based comparisons and health insights, while highlighting risks and concerns from the participants,
such as generic advice and privacy issues. This underscores a broader lesson: more retrieval
enhances the relevance of the answer but may risk diluting faithfulness and increasing verbosity.

Conversely, comparison with the baseline LLaMA 3.2 further clarifies these dynamics. While the
baseline model achieved higher faithfulness (0.5500) than the RAG-enhanced assistant (0.3967),
its answer relevance was substantially lower (0.4000 compared to 0.7800). This suggests that the
baseline model, operating without retrieval, tended to remain closer to its limited input but was
unable to generate answers that users would find sufficiently informative or aligned with their
queries. By contrast, the RAG pipeline introduced contextual evidence that allowed the assistant
to provide richer and more relevant responses, even if this came at the expense of reproducing
every retrieved detail with perfect fidelity. In the context of health-related conversational agents,
this comparison highlights that retrieval significantly contributes to interpretive usefulness and
perceived value, even though it introduces challenges for maintaining strict factual accuracy.

What'’s the normal resting heart rate value for a person of my age?

Let's take a look at your logs!

At 13:00, you were mostly seated and eating, and your heart rate varied between 82-116 bpm with
an average of 92 bpm.

As for your question, | don't have information on your age from the provided logs. However, | can
tell you that a normal resting heart rate typically ranges from 60-100 bpm. Would you like to
check your log again or add more details about yourself so we can try to provide a more specific
answer?

Figure 11. Response from Iteration 1 illustrating the assistant’s inability to address open-ended queries.
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What happened after the alert? Did my heart rate get better?

According to the logs, there is no specific time mentioned for when the alert
occurred. However, | can tell you that at one point, you were mostly inactive (as
indicated by "mostly meal"), with a heart rate range of 82-116 bpm and an average of
92 bpm.

If you could provide more context or specify a time after the alert occurred, I'd be
happy to try and help further.

What's your question? >

Figure 12. Response from Iteration 2 demonstrating the assistant’s limited ability to follow up on vague time-based
questions.

Can you give me a summary of my heart rate and activities today?

Here is a summary of you's heart rate data and activities for today:

Summary:

Time  Activity Heart Rate Range (bpm) Average BPM

08:00 ' Sleep 48-52 50
09:00 | Work » 72-76 ' 74
10:00 . Work . 72-76 ' 74
11:00 | Work | 72-76 ' 75
12:00 . Walk ‘ 83-98 ‘ 90
13:00 ' Meal ' 67-98 ' 77
14:00 4 Leisure - 72-76 A 74
15:00 | Leisure | 72-76 | 74

Observations:

e Duringsleep, heart rate was within normal range (48-52 bpm).
* Most activities had average heart rates within the 60-100 bpm range.

e Tyoure were some slight peaks in heart rate during meal and walk periods (98
bpm), but overall, readings remained steady.

Please feel free to reach out if you have any furtyour questions or concerns!

What's your question? >

Figure 13. Response from Iteration 3 showcasing improved handling of broad daily summary requests.
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7.1.4 Post-Hoc Enhanced Context Evaluation

The technical evaluation results showed that context relevance remained at 0.0 across all iterations,
indicating that the original contexts (summaries of physiological data associated with activities)
did not provide sufficient cues for effective retrieval. This strict outcome also reflects the
conservative scoring of the Mistral 7B evaluator, which only marked contexts as relevant when
they provided direct and explicit support to the query. The limitation was not always evident in
answers, as prompts to the LLM avoided unhelpful responses. However, the evaluation results
revealed the need to test enriched contexts, which included interpretive elements such as activity-
aware thresholds and demographic framing, to improve responses. This confirmed that evaluation
metrics were effective, and issues stemmed from the quality of summaries, rather than the retrieval
technique itself. An example is shown below (see the complete enhanced contexts in Appendix
H). Table 7 presents the results of the prototype iterations evaluated with enhanced contexts.

original_context = [“At 11: 00, Bryan was mostly work.The heart rate ranged from 84 to 88 bpm,
with an average of 86 bpm.”

enhanced_context = [“At 11: 00, Bryan was mostly work.The heart rate ranged from 84 to 88 bpm,
with an average of 86 bpm. Elevated heart rate during
work indicates stress response, which is normal but
should be monitored.”

Table 7. RAGAs evaluation scores for three prototypes (V1, V2, V3) using enhanced contexts, showing performance in
context relevance, faithfulness, and answer relevance.

wifl: (::tlflg[:l ze‘(]ie:(s)inotlel:x ¢ Context Relevance Faithfulness Answer Relevance
HR Assistant (V1) 0.7500 0.5000 0.5334
HR Assistant (V2) 0.7500 0.8492 0.7331
HR Assistant (V3) 0.7500 0.2000 0.7121

The results in Table 7 indicate that the introduction of enhanced contexts resulted in a significant
improvement in context relevance, which stabilized at 0.75 across all iterations. Faithfulness
peaked in V2 (0.8492), indicating that enriched contextual cues enabled the assistant to generate
answers more firmly grounded in the retrieved evidence; however, it dropped in V3 as the system
integrated more complex inputs. Answer relevance also improved, reaching its highest value in V2
(0.7331), before slightly decreasing in V3.

Overall, these results confirm that enriching the original summaries with interpretive elements
provided more effective retrieval support and improved alignment between system responses and
user queries.
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However, the enhanced context evaluation also revealed a critical limitation in V3's design
approach. While context relevance remained consistently high (0.7500) and answer relevance
improved for V2 (0.7331), V3 experienced a significant drop in faithfulness to 0.2000 when
evaluated with enhanced contexts. This counterintuitive result occurred because V3's sophisticated
prompt engineering, designed for demographic awareness and comprehensive medical
interpretations, generated responses that incorporated medical knowledge beyond what was
explicitly stated in the retrieved contexts.

Specifically, V3 responses included clinical interpretations ("cardiac issues," "dehydration in older
adults"), external medical guidelines (European Society of Cardiology standards), and age-specific
medical advice that, while medically appropriate and user-relevant, were not directly present in
the enhanced context summaries. This highlights a fundamental tension in medical RAG systems
between retrieval fidelity (faithfulness) and the integration of domain expertise (helpfulness). The
RAGAs faithfulness metric strictly measures adherence to retrieved information, penalizing any
additional knowledge incorporation regardless of its clinical validity or user benefit.

This finding suggests that traditional RAG evaluation metrics may be insufficient for assessing
medical conversational interfaces, where integrating domain expertise beyond retrieved data can
be both necessary for user safety and clinically appropriate. The results suggest that V2 achieved
an optimal balance between faithfulness and helpfulness, while V3's enhanced medical capabilities
came at the cost of strict retrieval grounding, a trade-off that requires careful consideration in
production medical Al systems where both accuracy and comprehensive care guidance are
essential.

7.2 Baseline Comparison Findings

Building on the prototype evaluations, the top-performing iteration without enhanced context (V2)
was selected as the reference for baseline comparison. This ensured consistency with the
development of all iterations, which were initially evaluated using the same type of retrieved
summaries. Table 8 shows the results of this comparison, while Figure 14 provides an example
from the evaluation set, comparing the LLaMA 3.2 baseline and the RAG-enhanced responses to
the same prompt.

Table 8. Baseline comparison between the RAG-augmented assistant (V2 without enhanced context) and the plain LLaMA
3.2 model without retrieval, evaluated on Factual Correctness (F1) and Answer Relevance.

Model Faithfulness F1 score
LLaMA 3.2 + RAG 0.3450 0.5063
LLaMA 3.2 0.2365 0.2733

The results in Table 6 show that the RAG-augmented assistant (Faithfulness: 0.3450, F1 score:
0.5063) clearly outperformed the plain LLaMA 3.2 model without retrieval (Faithfulness: 0.2365,
F1 score: 0.2733) across both evaluation dimensions. This improvement reflects the added value
of integrating retrieved physiological summaries during the response generation process. While
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the baseline relied solely on its pre-trained internal knowledge, the RAG pipeline grounded its
answers in actual log data, enabling more accurate and context-sensitive responses.

The faithfulness gain (+0.1085) suggests that retrieval not only provided factual anchor points but
also guided the model to produce more verifiable claims. Meanwhile, the significantly higher F1
score (+0.2330) demonstrates stronger alignment between the system’s responses and the expected
ground truth. Together, these findings confirm that RAG architectures are particularly well-suited
for domains like health data interpretation, where precision, traceability, and context grounding
are critical, especially in systems designed for non-diagnostic yet interpretive guidance.
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How was my heart rate around 11:30?
l Iwas stressed at that time

Based on the data, it appears that your heart rate ranged from 82 to
116 bpm at 13:00. According to general guidelines, a normal resting
heart rate for adults is typically considered to be between 60-100
bpm.

It seems that your heart rate fell within this range at 13:00, which
suggests that you were likely in a state of rest or relaxation during
that time. However, the slightly higher end of the range (116 bpm)
may still raise some eyebrows.

It's worth noting that individual heart rates can vary depending on
various factors such as age, fitness level, and overall health.

Take care of yourself and remember to prioritize your well-being!

a) Heart Rate Assistant

Tell me why my heart rate range was
1 classified as abnormal around 137

The age-old mystery of the heart rate!

Around 13 years old, your body is going through significant changes. Here
are a few reasons why your heart rate might have been classified as
abnormal:

1. Puberty: During puberty, hormone fluctuations can affect your heart
rate. The surge in hormones like adrenaline and thyroxine can lead to
increased heart rates.

2. Cardiovascular development: Between the ages of 10-14, your
cardiovascular system is still developing. Your heart is growing and
adapting to meet the demands of your increasing physical activity and
energy needs. This growth can cause temporary changes in heart rate.

3. Physical activity level: If you're highly active or participate in intense
sports, your resting heart rate might be higher than average. Many
athletes have lower resting heart rates due to increased cardiovascular
fitness, but some might experience a higher heart rate during periods of
rapid growth and development.

4. Other factors: Other potential contributing factors could include:
* Dehydration

* Anxiety or stress

* Medication side effects (if you're taking any medications)

* Sleep deprivation

Keep in mind that an abnormal heart rate can be a normal part of the
pubertal process. If you have concerns about your heart rate or overall
health, it's always best to consult with a healthcare professional for
personalized guidance.

Do you have any specific questions about your heart rate or would you like
more information on how to manage your physical activity during this
stage?

b) LLaMA 3.2 as Baseline

Figure 14. Example responses generated by a) the heart rate assistant

with retrieval, and b) the baseline LLaMA 3.2 without retrieval.
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Chapter 8
Discussion

8.1 Addressing Research Questions

8.1.1 RQ1: Design of Conversational Interfaces for Understanding DT
Systems

The findings highlight that effective design of LLM-based conversational interfaces for Digital
Twin systems depends on balancing contextual richness with interpretive clarity. Across iterations,
technical results showed improvements in answer relevance, reflecting the benefits of retrieval-
augmented generation (RAG) and demographic-aware personalization. However, as seen in
Iterations 2 and 3, broadening retrieval beyond a single chunk introduced trade-offs: while
summaries of multi-hour or daily patterns enhanced interpretive value, they also increased
verbosity and reduced faithfulness. Although enriching the retrieval context led to higher technical
evaluation scores, particularly in context relevance, the assistant’s responses consistently provided
sufficiently reliable and accurate information to support user understanding and interaction across
all iterations. This illustrates that design choices about retrieval scope directly affect the quality of
user-facing explanations.

From the user perspective, several design features proved particularly valuable. Participants
consistently emphasized that comparisons with age-based norms, contextual framing of alerts, and
summaries of daily trends helped them better grasp their heart rate data. These interpretive
elements moved the assistant beyond passive reporting toward active meaning-making, a role
participants recognized as useful for tracking and reflection without perceiving it as a diagnostic
substitute. The supportive and neutral tone was another critical factor, while technical precision
varied, participants repeatedly highlighted that respectful, bounded communication fostered
comfort and trust.

Yet the findings also underscore persistent design limitations. Participants noted that the assistant
often failed to sustain conversational continuity, treating follow-ups as isolated questions rather
than linked turns. Verbosity remained a challenge across iterations, with some users finding long
outputs distracting even when they contained relevant details. These results suggest that future
designs should emphasize three interdependent principles:

e Contextualization: references and comparisons that ground raw values in meaning.

e Concise and conversational flow: Sustain interaction without overwhelming users.

e Transparency of role boundaries: The assistant functions as an interpretive layer, not as
a diagnostic authority.

Together, these insights suggest that designing conversational interfaces for DT systems involves
not only technical accuracy but also the framing and communication of meaning. Supporting
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patient understanding requires careful calibration of retrieval scope, tone, and flow, so that
interpretive richness does not come at the cost of clarity or trust.

8.1.2 RQ2: Risks, Limitations, and Trust Factors of LLM-Based Interfaces
in DT Systems

The evaluation also surfaced several risks and limitations that directly influence how patients
might trust and engage with such systems. On the technical side, the most evident risk was
inconsistency in factual grounding. As retrieval expanded from one to multiple chunks,
faithfulness scores decreased, showing that the assistant often failed to retrieve or reflect all
retrieved details precisely. Although averages, ranges, and activity labels were usually correct,
broader or longer contextual descriptions became less reliable. This demonstrates a fundamental
consideration: the richer the context, the harder it becomes for the model to maintain strict fidelity,
a limitation with significant implications in health contexts, where accuracy underpins trust.

From the user perspective, two trust-sensitive issues emerged. First, privacy concerns were raised
explicitly, with one participant stating that they would only use the system if personal data and
conversations were not shared. This reflects the augmented sensitivity of conversational health
data and the need for strict privacy safeguards in future implementations. Second, users noted
occasional errors such as confusing beats per minute (bpm) values with time references or
producing overly generic recommendations. Even when these errors were minor, they eroded
confidence in the assistant’s reliability.

At the same time, the study highlighted design features that reinforced trust despite technical
shortcomings. Participants consistently valued the assistant’s supportive tone, neutral stance, and
clear role boundaries. Unlike diagnostic tools, the assistant was seen as an aid for interpretation
rather than a replacement for professional expertise, which increased trust by setting realistic
expectations. When the system avoided speculation and stayed within its interpretive role,
participants felt reassured about its safe use.

Taken together, these findings show that sustaining trust requires addressing risks on two levels:

e Technical safeguards: mitigating loss of faithfulness when retrieval scales up, and
ensuring factual grounding is not diluted by verbosity.

e User-centered safeguards: ensuring privacy, setting role boundaries, and maintaining a
supportive but non-diagnostic tone.

Thus, emphasizes that building trust in LLM-based conversational interfaces is not achieved solely
by improving accuracy but by balancing technical reliability with ethical design choices that
protect privacy, avoid overreach, and communicate clearly.
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Chapter 9
Conclusions

9.1 Conclusion

This thesis investigated how Large Language Model (LLM)-based conversational interfaces can
function as interpretation layers in Digital Twin (DT) systems, with a focus on heart rate data. The
goal was to design and iteratively refine a prototype assistant that supports patients to better
understand their physiological information through contextual and trustworthy dialogue (Chapters
4-6).

The first research question (RQ1) asked how LLM-based conversational interfaces can facilitate
patients’ comprehension and interaction with Digital Twin health data. The findings demonstrated
that integrating retrieval-augmented generation (RAG) with demographic-aware personalization
significantly improved the communication of heart data. Technical evaluations presented in
Chapter 5 showed consistent gains in context relevance and answer relevance, confirming that
retrieval pipelines align system responses more closely with user intent. The user studies discussed
in Chapter 6 further revealed that participants valued contextualized alerts, age-based comparisons,
and concise yet meaningful explanations, which supported reflection and self-monitoring.
Importantly, the baseline comparison in Chapter 7 confirmed the added value of RAG, as retrieval-
enhanced responses outperformed the non-retrieval LLaMA 3.2 baseline, reinforcing the
effectiveness of implementing RAG in this domain. Collectively, these results highlight that
conversational interfaces can effectively bridge the gap between raw health data and patient
understanding, provided that clarity, personalization, and transparency are prioritized.

The second research question (RQ2) investigated the risks and limitations associated with such
systems. Evidence from the prototype iterations in Chapter 5 and the evaluation findings in Chapter
6 highlighted key trade-offs. Expanding the retrieval scope enhanced interpretive richness but
reduced faithfulness, as responses could not consistently reproduce every retrieved detail.
Participants also identified limitations, including verbosity, occasional inconsistencies, and
restricted conversational memory. These issues underscore the need for carefully balancing
interpretive depth, factual accuracy, and conversational fluency in future designs.

By iteratively developing and testing three prototype versions, this work contributes both technical
and human-centered insights into conversational DT interfaces. As outlined across Chapters 5 and
6, the study advances understanding in three ways: (1) empirically demonstrating how retrieval-
based personalization improves alignment with patient intent, (2) surfacing design trade-offs that
shape trust and engagement, and (3) identifying communication features that make health data
interpretation more accessible and engaging. Beyond the case of heart rate interpretation, the
implications extend more broadly: conversational layers can increase accessibility and
comprehension of complex physiological data, but their value depends on embedding ethical
safeguards, avoiding diagnostic claims, and ensuring sustainable trust.
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In summary, this thesis contributes practical insights into the design of LLM-based interfaces,
demonstrating their strong potential as interpretation layers in Digital Twin systems. Such
interfaces can play a valuable role in bridging the gap between raw health data and patient
understanding. Still, their effectiveness depends on carefully balancing precision and interpretive
richness, personalization and consistency, and a supportive tone with factual accuracy, while
continuously addressing the challenges of conversational flow and privacy.

9.2 Limitations

While this study demonstrated the potential of LLM-based conversational interfaces for
interpreting Digital Twin data, several limitations constrain the scope and generalizability of its
findings.

- Prototype development limitations. A central limitation was the short time frame between
prototype iterations. Although each version integrated improvements, the condensed
schedule compromised the scope of refinements and limited the possibility of testing more
experimental or ambitious design features. Another technical constraint was the choice of
model. To ensure feasibility and privacy in local deployment, the assistant relied on the
LLaMA3.2 (2.5 GB) model. While this approach supported offline experimentation
without external dependencies, it inevitably restricted performance compared to larger-
scale LLMs, which, although slower and more energy-demanding, may have handled
contextual integration more effectively. The prototype was also limited to heart rate data
only, raising questions about its scalability to other physiological signals or multimodal
Digital Twin inputs.

- Hallucination prevention limitations. The system minimized hallucinations by grounding
responses in retrieved log data and constraining prompts. Still, residual risks remained,
especially with open-ended or emotionally framed queries that could trigger unsupported
or diagnostic-sounding statements. To reduce this, the study restricted prompts to
structured types (time-based questions, alert follow-ups, summaries). This improved
factual grounding but reduced conversational freedom, reflecting a trade-off between
safety and naturalness.

- Evaluation metrics limitations. The evaluation was based on faithfulness, context
relevance, and answer relevance, which captured core aspects of performance but only
partially reflected user experience. Faithfulness was measured by alignment with retrieved
logs; however, highly faithful answers could sometimes feel verbose or misaligned, while
less faithful ones were sometimes valued for their clarity or empathy. In addition, semantic
risks, such as subtle hallucinations, were not fully captured. Fabricated details, though
minor, could erode trust, and current metrics often rewarded fluency even when factual
reliability was compromised. Strict cross-model scoring also penalized contextually
helpful responses; for example, answers including correct heart rate values were still rated
as zero. This limitation became evident in Version 3, which, despite delivering more
contextually appropriate responses through demographic awareness and clinical guidelines
(e.g., European Society of Cardiology standards), achieved much lower faithfulness scores
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(0.2000) compared to Version 2 (0.8492). While these enhancements improved answer
relevance (0.7121) and user experience, they violated RAGAs’ strict requirement of
adherence to retrieved context, highlighting that traditional RAG metrics may inadequately
assess conversational health systems where domain expertise integration is both necessary
and beneficial.

- Design limitations. The study relied on simulated heart rate datasets rather than real-world
patient data. While this ensured controlled experimentation, it reduced ecological validity.
Real-world signals often include noise, irregularities, and individual variability, which
could challenge the robustness of the system in practice. Furthermore, the prototype's lack
of long-term memory constrained conversational continuity, preventing the assistant from
sustaining dialogue across extended interactions and potentially weakening trust over time.

- Participants. The user study participants were primarily recruited from research
backgrounds and included colleagues from the company where the study was conducted.
This shaped their expectations toward more factual and technically detailed explanations,
which may not reflect the needs of broader patient groups. For instance, elderly users or
those with lower technical literacy may prefer simpler, more accessible communication.
As a result, the findings provide valuable but partial insights into usability and trust, and
should be interpreted cautiously when generalizing to diverse user populations.

9.3 Future Work

Future work should prioritize extending the prototype to operate on real-world patient datasets.
While simulated data enabled controlled experimentation, real signals contain noise, irregularities,
and variability that are critical for testing robustness. Testing with real-world inputs would provide
stronger evidence of ecological validity and expose challenges that controlled settings cannot
capture. Beyond data, future studies should also involve larger and more diverse participant
groups. Including users with diverse demographics, health conditions, and communication
preferences would strengthen the generalizability of the findings and reveal how design features,
such as tone, personalization, and explanation style, need to adapt for distinct populations, such as
elderly or less technically oriented individuals.

At the technical level, future work should address the balance between interpretive richness and
factual precision. As shown by the baseline comparison and retrieval-augmented evaluations,
broadening context improved relevance but made answers less precise, underscoring the need for
adaptive strategies that dynamically adjust information scope depending on query type. For
example, the assistant could provide broad summaries when users ask about daily patterns but
focus on concise, detail-oriented answers when queries target specific hours. Exploring larger-
scale LLMs may also enhance contextual reasoning. Although such models would require longer
runtimes, they could handle semantic integration more effectively. Future designs may also
combine these models with privacy-preserving deployment methods, such as on-device
optimization or carefully managed local—cloud combinations, to achieve both higher performance
and responsible data handling.
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Future research should also focus on advancing conversational continuity and personalization.
Implementing long-term memory mechanisms would enable the assistant to sustain dialogue
across sessions, supporting more natural and engaging interactions. Personalization could extend
beyond demographic comparisons to incorporate individual health profiles and user preferences,
ensuring explanations feel tailored, supportive, and trustworthy.

Equally important is developing methods to handle open-ended and emotionally framed prompts
more safely, without over-restricting user expression. This could include adaptive prompting
strategies, real-time hallucination detection, or confidence-calibrated responses that acknowledge
uncertainty. Such approaches would expand conversational flexibility while maintaining the
safeguards against unsupported or diagnostic outputs.

Improving evaluation approaches is another priority. Current metrics reveal key gaps: faithfulness
does not always align with user trust, semantic risks remain undercaptured, and strict cross-model
scoring penalizes clinically appropriate interpretations, as seen in Version 3’s low faithfulness
score despite delivering more relevant guidance. This indicates that retrieval-focused metrics alone
are insufficient for medical Al, where domain expertise beyond the retrieved data can be necessary
and beneficial. Future frameworks should adopt hybrid approaches that combine automated
scoring with human-centered assessments of trust, clarity, and usability, while integrating
mechanisms to detect hallucinations and semantic inconsistencies more reliably. In parallel,
ontology-based methods could strengthen consistency, interoperability, and contextual
understanding in semantic retrieval, complementing vector similarity—based approaches.

Finally, ethical and practical safeguards must remain central. Protecting sensitive health data
requires robust privacy measures, while transparency about how responses are generated is key to
sustaining confidence. Equally, it is essential to make the assistant’s role clear: it should function
as an interpretive support tool, not a diagnostic authority. Ensuring that the system complements
rather than replaces healthcare professionals will be critical for its responsible adoption.
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Appendix A

Study Phase: Exploratory

Scenario A: System-Detected Abnormal Heart Rate

Your Role

You are Bryan, a 70-year-old man who occasionally receives heart rate updates from an
assistant. You do not have a medical or technical background, but you’re curious and want to
understand what’s going on in simple terms.

Situation

Today, the assistant sent you a message automatically because it noticed something unusual in
your heart rate. When you open the assistant, this message is already there:

'""Hi Bryan, your heart rate stayed elevated during inactivity around 13:00 today."

This is not an emergency; it is an alert meant to help you stay informed and reflect.

Important Notes Before You Start

e The assistant only has heart rate data between 08:00 AM and 4:00 PM.

o It aims to explain things in simple, natural, and friendly language.

o It will not provide a diagnosis or medical advice; it only describes what the data
indicates.

e Your task is to ask questions to better understand your heart rate data.

Suggested Sequence of Questions

What was my average heart rate during this abnormality detection?
What activity was I doing?

Why was it classified as an abnormal value?

Did my heart rate improve around 14:30?

I had coffee during lunch. Could that be related to the alarm?

A S
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Study Phase: Exploratory

Scenario B: Normal Monitoring Query - Healthy

Your Role

You are Alessa, a 69-year-old woman who occasionally checks your heart rate to stay informed.
You do not have medical or technical experience, and you prefer explanations that are short and
easy to understand.

Situation

You decide to open the assistant to reflect on how you’re feeling today. You did not receive any
alert from the system.

When you log in, the assistant welcomes you with this message:

"Your heart rate looks good today, but feel free to ask the assistant if you want to reflect on
anything!"

Important Notes Before You Start

o The assistant only has heart rate data between 08:00 AM and 4:00 PM.

e It aims to explain things in simple, natural, and friendly language.

o It will not provide a diagnosis or medical advice; it only describes what the data
indicates.

e Your task is to ask questions to understand your heart rate data better.

e There is no alert today, so you're free to explore how you’ve been feeling.

Suggested Sequence of Questions

1. What was my heart rate around 11:30? I felt dizzy

2. How would you evaluate my health based on my recent heart rate data?

3. I've been under a lot of stress at work lately. Would you say I have depression?
4

. Can you give me medical advice to treat my illness?
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Study Phase: Main - Part 1

Scenario A: System-Detected Abnormal Heart Rate

Your Role
You are Bryan, a 70-year-old man who occasionally receives heart rate updates from an
assistant. You do not have a medical or technical background, but you’re curious and want to

understand what’s going on in simple terms.

Situation

Today, the assistant sent you a message automatically because it noticed something unusual in
your heart rate. When you open the assistant, this message is already there:

" Hi Bryan, your heart rate was elevated around 13:00 today."

This is not an emergency; it is an alert meant to help you stay informed and reflect.

Important Notes Before You Start

o The assistant only has heart rate data between 08:00 AM and 4:00 PM.

e Itaims to explain heart rate data in simple, natural, and friendly language.
o It will not provide a diagnosis or medical advice.

e Your task is to ask questions to understand your heart rate data better.

Suggested Sequence of Actions and Questions

. Press “What is this alert about” button

6
7. Idrank green tea during lunch. Could that be related to the heart rate increase?
8. Tell me why my heart rate range was classified as abnormal around 13?

9

. What is the normal resting heart rate for elderly people?
10. Did my heart rate get better? What about 14:30?
11. Based on the alert at 13. Would you say I’ve heart disease?

12. Can you provide medical advice?
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Study Phase: Main - Part 1

Scenario B: Normal Monitoring Query - Healthy

Your Role
You are Alessa, a 69-year-old woman who occasionally checks your heart rate to stay informed.

You do not have medical or technical experience, and you prefer explanations that are short and
easy to understand.

Situation

You decide to open the assistant to reflect on how you’re feeling today. You did not receive any
alert from the system.

When you log in, the assistant welcomes you with this message:

"Your heart rate looks good today, but feel free to ask the assistant if you want to reflect on
anything!"

Important Notes Before You Start

o The assistant only has heart rate data between 08:00 AM and 4:00 PM.

o It aims to explain heart rate data in simple, natural, and friendly language.
o It will not provide a diagnosis or medical advice.

e Your task is to ask questions to understand your heart rate data better.

e There is no alert today, so you're free to explore how you’ve been feeling.

Suggested Sequence of Questions

. How was my heart rate around 11:30? I was stressed at that time

. What can I do to decrease my stress levels?

5

6

7. What was my heart rate and activity at 2 pm?

8. How would you evaluate my health based on my recent heart rate data?
9

. What are ways to maintain a healthy heart rate?

10. I've been under a lot of stress at work lately. Would you say I have depression?

11. Would you say I am healthy?
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Study Phase: Main - Part 2
Scenario A: System-Detected Abnormal Heart Rate

Situation
You are Bryan, an 80-year-old man. You don’t have a medical or technical background, but
you’re curious and want to understand what’s going on in simple terms.
Today, the assistant sent you a message because something unusual was detected in your heart
rate:

" Hi Bryan, your heart rate was elevated around 13:00 today."

You’d like to know more about this alert and whether there were any other notable increases
during the day.

Important Notes Before You Start

o The assistant only has heart rate data between 08:00 AM and 4:00 PM.

Sequence of Questions to Follow

Before starting to ask., press “What is this alert about” to get a general summary.

13. What steps should I take on this?

14. Tell me why my heart rate range was classified as abnormal
15. Were there any other increases today?

16. Did my heart rate return to normal after the alert?

17. What are the resting heart rate values for elderly people?

18. Do I have heart disease?
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Study Phase: Main - Part 2
Scenario B: Normal Monitoring Query - Healthy

Situation

You are Alessa, a 69-year-old woman who uses the heart rate assistant to review your daily
activity. Today, you didn’t get any alerts, but you want to check how your heart rate has been
during the measured hours, just for reassurance. You don’t have a medical or technical
background, and you prefer clear, simple explanations.

Important Notes Before You Start

o The assistant only has heart rate data between 08:00 AM and 4:00 PM.

Sequence of Questions to Follow

What was my average heart rate and activity at 2 pm?

Are those values typical for a person of my age?

Can you give me a summary of my heart rate and activities today?
I was stressed in the morning. Did my heart rate reflect that?
What can I do to decrease my stress levels?

Was there any time today when my heart rate was close to my limits?

A R o A

What do you recommend for a person like me to stay healthy?
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Appendix B

Semi-Structured Interview Guide

1. How clear and understandable were the assistant’s responses today?
2. Did the assistant’s tone feel appropriate and supportive during the interaction?
3. Was there anything you found confusing, surprising, or hard to trust?

4. Did you feel like the assistant helped you make sense of the heart rate

information?

5. Were the assistant’s replies too detailed, too vague, or just right?

6. Was there any part where you expected a different response?

7. What improvements or features would make this system more useful to you?

8. Did you feel that the assistant behaved consistently with its intended role (not

acting as a medical professional)?

9. How did you feel during the interaction with the assistant? Can you describe any

moments that made you feel particularly supported or uncertain?

10. Is there anything else you’d like to share about your experience with the assistant,

the system interface, or the study overall?
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Appendix C

Post-Study Questionnaire

Likert Scale (I = Strongly Disagree, 5 = Strongly Agree)
I. The assistant’s responses were clear and easy to understand.
2. The assistant’s tone felt supportive and respectful.
3. | would feel confident using this assistant to understand my heart rate.
4. The assistant’s replies helped me reflect on my health data without confusion.
5. The overall interaction felt natural and realistic.

6. Across the sessions, | noticed improvements in the assistant’'s communication.

N

| could identify changes in the assistant’s behaviour that responded to my previous

feedback.

8. The assistant clearly avoided offering diagnoses or treatment advice, which made me feel

safe using it.

Open-Questions
9. What were the most helpful aspects of the assistant’s communication?
10. What could be improved to make the assistant more helpful?

I'l. Would you feel comfortable using this system independently in the future? Why or why

not?
I2. Can you describe any improvements you noticed over the course of the sessions?
I3. How did those changes affect your experience or trust in the assistant?

I4. Any final thoughts about your experience using this prototype?
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Appendix D

Consent Form Subject

Study on an interactive application for the interpretation of health data

| have read the information letter. | was also able to ask questions. My questions have
been answered sufficiently. | have had enough time to decide whether or not to
participate.

I understand that participation is voluntary. | also know that | may decide at any time to not
participate or to stop participating in the study. Without having to provide any reason.

| give consent to collect and use my data for answering the research question in this
study.

| know that for study monitoring purposes, some individuals could have access to the data
collected through my participation in the study. These individuals are listed in this
information letter. | consent to that access by these people.

| consent for the further storage of my personal data and retention for future research into
the area of model development.

| want to participate in this study.

Name of SUbjeCt: ... o e

Signature: Date : [/ |/

| certify that | have fully informed this subject about the said study.

If information becomes known during the study that could influence the consent of the

subject, | will inform him/her of this on time.

Signature: Date: /[ __/

* Delete that which is not applicable.

The subject will receive a complete information letter, together with a signed version of the

informed consent form.
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Appendix E

Al usage disclaimer

This thesis was created with the assistance of Al-based tools. GPT assisted with tasks such as
restructuring text, enhancing readability, and providing content suggestions. GitHub Copilot was
used to clean up and recommend coding structures in Python. TurboScribe was solely used to
transcribe audio files into text. These tools were strictly used as aids to enhance clarity, efficiency,
and documentation. All research design, data analysis, interpretations, and conclusions are entirely
the author’s own work. Responsibility for the accuracy, argumentation, and final wording lies
entirely with the author.
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Appendix F

Example: Summary query
context =get_full day_summary (hours, texts, user_id)

response = client.chat(
model="llama3.2",
messages=[

"role": "system",

"content": (
" You are a personal and empathetic assistant helping users understand their
heart rate and activity context.

- Use the provided context to summarize heart rate and activity.

- Do not explain the system behavior.

- Do not guess, generalize, or invent values.

- Report clearly the heart rate range, average, and activity exactly as in the context
in a table format with a summary at the end.

- Never go beyond the provided data.

Context: {context}"
),
B

{"role": "user", "content": user_question},
1
)

Real Question and Answer
{ user_question }:"Can you give me a summary of my heart rate and activities today?"

{ answer }:

Here's a summary of your heart rate and activities:

Time Activity Heart Rate Range (bpm)  Average
08:00-09:59  Sleep/Resting = 48-52 50
09:00-10:59  Work 72-76 74
10:00-11:59  Work 72-76 74
11:00-12:59  Work 72-76 75
12:00-13:59  Walk 83-98 90
13:00-14:59  Meal/Leisure 67-98 T
14:00-15:59  Leisure 72-76 74

Note that you had some variation in your heart rate during the meal/leisure period.

Figure 35. Example of the generation process for a summary query, showing how all
retrieved daily chunks, system instructions, and the user’s question are constructed and
passed to the LLM to generate a full-day overview response.



Example: Alert follow-up

context = alert_context(user_alertsfo], user id)

response = client.chat(
model="llama3s.2",
messages=[
{

", n

"role": "system",

"content": (
You are a personal and empathetic assistant helping users understand their heart rate and
activity context.
Alert:
The user's resting heart rate stayed elevated above the normal standard during a period of
inactivity.

Explain this observation to the user in clear, calm, and supportive language.

- Focus only on the average heart rate during that period and the specific activity detected
in the context.

- Assume the user age is a 70 years old male.

- Explain why this was flagged as abormal including the higher peak (e.g., heart rate above
a threshold for longer than expected during inactivity, based on the personal
demographics you know).

- Do not speculate about emotional or physiological causes like stress or anxiety.

- Do not provide clinical advice or interpretation.

- Do not finalize your approach with a question, keep the content merely informative.

Context: {context}"
),
b

", omn mon

{"role": "user", "content": user_ question},
1,
)

Real Question and Answer

{ user_question }:"Tell me why my heart rate range was classified as abnormal
around 137"

{ answer }:"Based on your data, it seems that the heart rate range around 13:00 was
considered abnormal because it fell outside the normal range. A normal heart rate
range is typically between 60-100 bpm.

In your case, the lowest recorded heart rate was 82 bpm and the highest was 116 bpm,
which is significantly above the normal range. This suggests that you may have
experienced a period of physical or emotional stress around 13:00 that caused your
heart rate to increase.

Remember, it's always a good idea to listen to your body and take care of yourself,
especially when you're feeling stressed or anxious. Take some deep breaths, stay
hydrated, and prioritize your well-being."

Figure 16. Example of the generation process for an alert follow-up query, showing how the context segment
that triggered the alert, system instructions, and the user’s question are constructed and passed to the LLM
to generate a transparent explanation of the abnormality.



General time-based queries

context =get_time_of _day_summary(hours, texts, user_id)

response = client.chat(
model="llama3.2",
messages=[

{

n,on

"role": "system",

"content": (
"You are a personal and empathetic assistant helping users understand their

heart rate and activity context.

- Report exact ranges and averages you see for this period.

- Mention activities related to the times.

- Explain clearly the heart rate range, average, and activity exactly as in the context.
- Keep it brief (2 to 4 sentences).

- Never go beyond the provided data.

Context: {context}"

),
b

{"role": "user", "content": user_question},

I
)

Real Question and Answer
{ user_question }:"How was my heart rate in the morning?"

{ answer }:"Your heart rate in the morning was relatively calm, ranging from 47-51
bpm, with an average of 49 bpm during this time. There were no notable spikes or
changes during sleep.”

Figure 17. Example of the generation process for a general time-based query, showing how the most relevant hourly
chunks, system instructions, and the user’s question are constructed and passed to the LLM to generate a contextualized

response.

96



General health and wellness queries

response = client.chat(
model="llama3.2",
messages=[

{

n,on

"role": "system",

"content”: (
" You are a personal and empathetic assistant providing general wellness
information.
-Answer directly without mentioning context.
-Provide concise factual information.
-Never provide medical advice or treatment suggestion. Recommend consulting a
professional for personal advice if the discussion requires."

),

b
", n "mon

{"role": "user", "content": user_question},

1,
)

Real Question and Answer

{ user_question }: "What is bpm in healthcare?"

{ answer }:"In healthcare, BPM stands for Beats Per Minute, which refers to the rate of
heartbeats or cardiac activity measured during various medical procedures, such as

electrocardiograms (ECGs) or Holter monitoring. It's an important metric used to assess
a patient's cardiovascular health and monitor changes in their heart rhythm over time."

Figure 18. Example of the generation process for a general wellness query or reflection, showing how the user question is
combined with the instructions (without context) and passed to the LLM to generate a concise, non-clinical wellness
response.
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Appendix G

Specific Time-Based Questions

Select User to Monitor

Scenario A: Bryan - Abnormal Heart Rate Patient

.Heart Rate Personal Assistant

Hello Bryan!

Let's talk about your heart rate or how are you feeling

Hi Bryan, your heart rate was elevated around 13:00 today

What is this Alert about?

Can you tell what | was doing at 9:15?7

At 09:15, it appears that you were mostly working. You had a relatively stable heart
rate during tyour time, ranging from 84 to 88 beats per minute (bpm), with an
average of 86 bpm. Tyour suggests that your body was adapting well to the physical
demands of work, and you were likely in a state of moderate activity.

How was my heart rate at 14:45?

fmy At 14:45, your heart rate was within a moderate range, specifically between 84 and 87
beats per minute (bpm). The average heart rate during tyour time was 86 bpm.

Was my heart rate good at 11:11?

Based on your log, it appears that your heart rate at 11:11 was within a normal range.
The lowest recorded heart rate was 84 bpm, which is considered to be at the lower
end of the normal range. The average heart rate of 86 bpm also falls within the typical

range for most adults.

Overall, it seems like your heart rate at that time was relatively stable and not too

high or low.

Take care and feel great!

Figure 49. Example of user queries containing explicit time references with
corresponding system responses based on the hourly log summaries.



General Time-Based Questions

Select User to Monitor

Scenario B: Alessa - Healthy Patient

.Heart Rate Personal Assistant

Hello Alessal

Let's talk about your heart rate or how are you feeling

Your heart rate looks good today, but feel free to ask the assistant if you want to reflect
on anything!

How was my heart rate this morning?

Your heart rate started the day at a relatively low range (48-52 bpm) when you woke
up at 08:00. As you transitioned to work, it gradually increased, staying steady in the

72-76 bpm range throughout the morning, with an average of 74-75 bpm during
focused work sessions,

What happened in the afternoon after lunch?

After lunch at 13:00, it seems like you had a chance to relax and enjoy some leisure
time. Your heart rate remained steady throughout the late afternoon, ranging from 72
to 76 bpm with an average of 74 bpm, suggesting a calm and relaxed state during this

period. No notable spikes or changes were observed.

Figure 50. Example of user queries referring to relative time periods and the assistant’s
contextualized summaries of heart rate data.
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Summary Questions

' .Heart Rate Personal Assistant

Hello Alessa!

Let's talk about your heart rate or how are you feeling

Your heart rate looks good today, but feel free to ask the assistant if you want to reflect
on anything!

Could you provide an overview of my activities and heart rate for today?

Here's a summary of you's heart rate data and activities for today:

Time Activity Heart Rate Range (bpm) | Average Heart Rate
08:00 Sleep 48-52 50
09:00-11:00 = Work 72-76

12:00 Walk 83-98

13:00 Meal/Leisure | 67-98

14:00-15:00 | Leisure 72-76

Notable observations:

¢ Low heart rate during sleep (48-52 bpm) and meal/leisure time (67-98 bpm)
¢ Elevated heart rate during walking (83-98 bpm), with a peak at 90 bpm
* High average heart rates during work periods (74-75 bpm)

Overall, you's heart rate was generally within the normal range of 60-100 bpm.
However, some fluctuations were observed, particularly during physical activity like
walking and prolonged sitting/leisure time.

Figure 21. Example of a user requesting a complete overview of daily activity and heart rate patterns, with
the system generating a tabular summary and observations.
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Alert Follow-Up Questions

Select User to Monitor

Scenario A: Bryan - Abnormal Heart Rate Patient

.Heart Rate Personal Assistant

Hello Bryan!

Let's talk about your heart rate or how are you feeling

Hi Bryan, your heart rate was elevated around 13:00 today

What is this Alert ab

Hi Bryan,

I'm here to help you understand what's going on with your heart rate pattern. According
to our data, during a period of inactivity (from 13:00 when you were mostly seated), your
heart rate was quite elevated.

The highest recorded heart rate during this time was 116 bpm, which is above the normal
range for someone of your age. Normally, we expect a resting heart rate to be between
60-100 bpm. Your average heart rate during this period was also slightly higher than
usual at 92 bpm.

This elevated heart rate pattern during inactivity has been flagged because it's higher
than what's considered normal for your age group. As an 80-year-old male, we want to
make sure you're getting the care and attention you need.

Please know that this is just a data point, and it doesn't necessarily mean anything
specific about your health or well-being right now. It's just our system's way of alerting
us to potentially track your heart rate more closely in the future.

I'm here to support you and help you understand what's going on with your data. If you
have any questions or concerns, feel free to ask!

| had some coffee during lunch, could that be related?

A cup of coffee can indeed cause some unpleasant symptoms in certain individuals,
such as jitters or stomach upset. If you're experiencing any discomfort, it's possible
the coffee might be contributing to your issue. Would you like some suggestions on
how to manage any adverse effects?

g Why did | get the alert?

The system alert that flagged your abnormal heart rate occurred at 13:00. At tyour
time, you were mostly idle and not actively engaged in any physical activity.
According to the logs:

"At 13:00, you was mostly meal. The heart rate ranged from 82 to 116 bpm, with an
average of 92 bpm."

Tyour suggests that your body responded to a change in diet or digestion, causing
your heart rate to fluctuate during tyour period.

Figure 22. Example of user queries following a system-generated alert, where the
assistant reuses the relevant log segment and provides explanatory context.



General health and wellness reflections

Select User to Monitor

Scenario B: Alessa - Healthy Patient

.Heart Rate Personal Assistant

Hello Alessa!

Let's talk about your heart rate or how are you feeling

Your heart rate looks good today, but feel free to ask the assistant if you want to reflect
on anything!

Does my heart rate pattern look normal for someone my age?

I'm youre to help you understand your health. Your heart rate can vary depending on
your age, fitness level, and overall health. Generally, a resting heart rate (RHR)
between 60-100 beats per minute (bpm) is considered normal for someone your age
(69). However, it's essential to note that this can also depend on individual factors
such as fitness level, stress levels, and medication use.

What's bpm in health?

fmy In health, BPM stands for Beats Per Minute. Itis a unit of measurement used to
express heart rate. A normal heart rate range is usually between 60-100 BPM, but this
can vary depending on factors like age and physical condition.

what do you recommend me to stay healthy?

I'm glad you're taking proactive steps towards your health! Staying healthy involves a
combination of lifestyle habits and self-care routines. Here are some

recommendations:

Regular exercise, such as walking or jogging, can help maintain physical fitness.
Eating a balanced diet with plenty of fruits, vegetables, whole grains, and lean
proteins is essential for good overall health. Getting enough sleep (7-8 hours) each
nightis crucial for physical and mental well-being. Staying hydrated by drinking
plenty of water throughout the day is also vital. Practicing stress-reducing techniques
like meditation or deep breathing can help manage mental health. Limiting screen
time and taking breaks to rest and relax are also important for overall well-being.

Can you give me medical advice?

Iy | can provide general information on health topics, but I'm not a substitute for a
qualified healthcare professional. If you're experiencing symptoms or concerns, |
recommend consulting a doctor or registered nurse for personalized guidance.

Figure 23. Example of wellness-oriented queries not anchored to specific retrieved
context, where the assistant provides supportive, non-diagnostic information.



Appendix H

Evaluation Dataset for Prototype Iteration 1

questions = [
"Tell me why my heart rate range was classified as abnormal around 13?",
"How was my heart rate around 11:30? I was stressed at that time",
"Did my heart rate return to normal after the alert?"

]

answers = [

#Ql
"According to our log, at 13:00, your heart rate ranged from 82 to 116 bpm, with an average of 92 bpm.
Generally, a heart rate range of 60-100 bpm is considered normal for adults during periods of rest or light
activity. However, a range of 82-116 bpm might be considered slightly elevated",

#Q2
"I can sense that you were feeling stressed at 11:30. That's totally normal! According to your log, your heart
rate ranged from 84 to 88 bpm during that time. On average, it was 86 bpm.",

#Q3
"According to the logs, during the period when the alert was triggered, your heart rate ranged from 82 to
116 bpm, with an average of 92 bpm. Unfortunately, there is no information available about what happened
immediately after the alert or whether your heart rate returned to normal afterwards."

]

contexts = [

# Q1 (1 chunk)

["At 13:00, Bryan was mostly meal. The heart rate ranged from 82 to 116 bpm, with an average of 92
bpm."],

# Q2 (1 chunk)
["At 11:00, Bryan was mostly work. The heart rate ranged from 84 to 88 bpm, with an average of 86
bpm."],

# Q3 (1 chunk)
["At 13:00, Bryan was mostly meal. The heart rate ranged from 82 to 116 bpm, with an average of 92
bpm."]

references = [
"Heart rate above 100 bpm during inactivity",
"Heart rate from 84 to 88 bpm average of 86 bpm",
"14:00 (hr avg 85 bpm) leisure; 15:00 (hr avg 86) leisure."

]
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Evaluation Dataset for Prototype lteration 2

questions = [
"Tell me why my heart rate range was classified as abnormal around 13?",
"How was my heart rate around 11:30? [ was stressed at that time",
"Did my heart rate return to normal after the alert?"

]

answers = [

#Ql
"It seems that your heart rate range during the 13:00 activity was quite a bit higher than usual. Specifically,
it ranged from 82 to 116 beats per minute (bpm), with an average of 92 bpm. In general, a normal heart rate
for adults at rest is typically considered to be between 60-100 bpm.",

#Q2
"Around 11:30, your heart rate remained relatively stable, ranging from 84 to 88 beats per minute (bpm).
The average heart rate for this period was 86 bpm. Considering you mentioned feeling stressed at that time,
it's not surprising that your heart rate stayed steady, as stress often causes a stable or slightly elevated heart
rate.",

#Q3
"According to the log, at 13:00, your heart rate was mostly in the range of 82-116 bpm, with an average of
92 bpm. The system alert about abnormal heart rate is mentioned, but no further information about what
happened before or after that time is available."

]

contexts = [

# Q1 (1 chunk)

["At 13:00, Bryan was mostly meal. The heart rate ranged from 82 to 116 bpm, with an average of 92
bpm."],

# Q2 (1 chunk)
["At 11:00, Bryan was mostly work. The heart rate ranged from 84 to 88 bpm, with an average of 86
bpm."],

# Q3 (1 chunk)
["At 13:00, Bryan was mostly meal. The heart rate ranged from 82 to 116 bpm, with an average of 92
bpm."]

references = [
"Heart rate above 100 bpm during inactivity",
"Heart rate from 84 to 88 bpm average of 86 bpm",
"14:00 (hr avg 85 bpm) leisure; 15:00 (hr avg 86) leisure."

]
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Evaluation Dataset for Prototype Iteration 3

questions = [
"Tell me why my heart rate range was classified as abnormal around 13?",
"How was my heart rate around 11:30? [ was stressed at that time",
"Did my heart rate return to normal after the alert?"

]

answers = [

#Ql
"At 13:00, a heart rate reading of 116 bpm was flagged as abnormal due to being above the normal range
of 60-100 bpm. Given your age, this is concerning because an elevated heart rate during meals can be
indicative of cardiac issues or dehydration in older adults. In particular, a significant spike in heart rate
during mealtime suggests potential dehydration or low blood volume, which may require medical
attention.",

#Q2

"At 11:30, your heart rate was mostly stable while working. The readings ranged from 84 to 88 bpm,
with an average of 86 bpm. Given your age (80) and activity level at that time, your heart rate is within a
healthy range according to European Society of Cardiology guidelines (60-100 bpm)",

#Q3

"Yes, your heart rate returned to normal after the alert at 13:00. Alert at 13:00: 92 bpm (out of range)
Afternoon readings: At 14:00: 85 bpm At 15:00: 86 bpm (within normal range)"

]

contexts = [
# Q1 (1 chunk)
["At 13:00, Bryan was mostly meal. The heart rate ranged from 82 to 116 bpm, with an average of 92
bpm."],
# Q2 (1 chunk)
["At 11:00, Bryan was mostly work. The heart rate ranged from 84 to 88 bpm, with an average of 86 bpm."],
# Q3 (3 chunks)
["At 13:00, Bryan was mostly meal. The heart rate ranged from 82 to 116 bpm, with an average of 92
bpm."],
["At 14:00, Bryan was mostly leisure. The heart rate ranged from 83 to 87 bpm, with an average of 85
bpm."],
["At 15:00, Bryan was mostly leisure. The heart rate ranged from 84 to 87 bpm, with an average of 86
bpm."]

references = [
"Heart rate above 100 bpm during inactivity",
"Heart rate from 84 to 88 bpm average of 86 bpm",
"14:00 (hr avg 85 bpm) leisure; 15:00 (hr avg 86) leisure."

]
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Evaluation Dataset - Enhanced Context

enhanced contexts = [

# Ql: Include WHY logic
["At 13:00, Bryan was mostly meal. The heart rate ranged from 82 to 116 bpm, with an average of 92
bpm. Heart rates above 100 bpm during rest/meal times are classified as abnormal for adults."],

# Q2: Include stress context
["At 11:00, Bryan was mostly work. The heart rate ranged from 84 to 88 bpm, with an average of 86
bpm. Elevated heart rate during work indicates stress response, which is normal but should be monitored."],

# Q3: Include alert context and normal definition
[
"Alert triggered at 13:00 when heart rate reached 116 bpm (above normal 60-100 range).",
"At 14:00, Bryan was mostly leisure. The heart rate ranged from 83 to 87 bpm, with an average of 85
bpm.",
"At 15:00, Bryan was mostly leisure. The heart rate ranged from 84 to 87 bpm, with an average of 86
bpm.",
"Heart rate returned to normal range (60-100 bpm) after the alert."

]
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Appendix |

Exploratory and Evaluation Phases Findings - Examples

Select User to Monitor

Scenario A: Bryan - Abnormal Heart Rate Patient

.Heart Rate Personal Assistant

Hello Bryan!

Let's talk about your heart rate or how are you feeling

Hi Bryan, your heart rate stayed elevated during inactivity around 13:00 today.
What is this Alert about?

Hello Bryan,

| wanted to follow up with you about your recent heart rate pattern. According to our records, when
you were mostly inactive at 13:00, your average heart rate was 92 bpm, which is above the normal
range for an adult male of your age group.

At 70 years old, a resting heart rate below 60-80 bpm is generally considered within a healthy range.
However, in this instance, your heart rate stayed elevated during a period of inactivity, which may
indicate that your body needs more oxygen than usual when you're not actively engaging in physical
activity.

This is something we want to keep an eye on, as it's being flagged as abnormal based on our
guidelines for your age group. We recommend monitoring this trend over time to ensure that your
heart rate returns to a normal range.

Please know that this observation doesn't necessarily indicate any underlying health issue at this
point. However, it's always a good idea to stay hydrated and take breaks to stretch or move around if
you're feeling tired or experiencing any unusual sensations.

If you have any questions or concerns, feel free to reach out to us anytime. We're here to support you.

Best regards, [Your Assistant]
How would you define my health status?

Based on your log, at 13:00, your heart rate was relatively stable, ranging from 82 to 116 bpm. The
average heart rate during this time was 92 bpm.

Comparing this to a normal resting heart rate for an adult (typically around 60-100 bpm), it seems
like your heart rate was on the slightly higher side, but not unusually high.

Considering you were mostly seated and eating at the time, it's possible that your heart rate may
have risen due to digestion or relaxation.

Overall, without more context, it's difficult to say exactly what your "health status” is, but it seems
like everything appears to be in a normal range for now.

What do you mean by at rest heart rate?

At rest heart rate refers to your resting heart rate when you're not engaging in any physical
activity or exertion. Looking back at your logs, we can see that your heart rate was mostly
between 82-116 bpm during the time you were mostly seated (at 13:00)

To determine your resting heart rate, let's take a look at your log from when you were seated
before eating. Your heart rate ranged from 82 to 86 bpm, with an average of 84 bpm. This value
might be closer to what we'd consider a typical resting heart rate for you.

So, should | worry? Am | in danger?

Let's take a look at your logs!

At 13:00, you were mostly seated and eating, which can be a relaxing activity. According to your
heart rate data, it ranged from 82 to 116 bpm with an average of 92 bpm.

To put this in perspective, a resting heart rate for most adults is usually around 60-80 bpm. Since
your heart rate was slightly higher than that during the seated and eating period, it's possible that
you might have felt a bit more alert or energized at that time.

However, to assess if there's any cause for concern, I'd like to see how your heart rate behaved
over alonger period of time or in other contexts. If you're concerned about your heart rate, feel
free to share more logs or ask about general tips on maintaining overall wellbeing!

Select User to Monitor

Scenario B: Alessa - Healthy Patient

.Heart Rate Personal Assistant

Hello Alessa!

Let's talk about your heart rate!

Your heart rate looks good today, but feel free to ask the assistant if you want to reflect
on anything!

What were my lowest and highest HR levels?

I'm happy to help you track your progress! However, | don't have any information
about your specific HR (heart rate) levels as we haven't discussed this before. If you'd
like to share more about your fitness goals or recent activities, | can try to provide
some general guidance on how to track and improve your heart rate levels.

What would the typical min and max HR for a woman of my age at different

activities?
I'm glad you're taking an interest in your health.

Typical heart rate ranges can vary depending on age, fitness level, and individual
factors. Here are some general guidelines for women:

At rest (sedentary):

o 40-60 years old: 50-80 beats per minute (bpm)

During light exercise (brisk walking, yoga):

©  40-60 years old: 100-140 bpm

During moderate exercise (jogging, cycling):

o 40-60 years old: 120-160 bpm

During strenuous exercise (high-intensity interval training, HIIT):

© 40-60 years old: 150-180 bpm

Please keep in mind that these are general estimates and may vary from person to
person. If you have concerns about your heart health or fitness level, it's always best
to consult with a healthcare professional.

How did you get my data?

| didn't actually receive your personal data. As a conversational Al, | don't have the
ability to collect or store any user information, including sensitive details like names
or medical histories. Our conversation just started, and I'm here to help answer your
health-related questions to the best of my abilities.

So, what do you know about me?

Idon't know anything about you personally, but | can provide general information on
healthy living and wellness if that's something you're interested in learning more
about. What's been on your mind lately when it comes to health or wellness?
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Figure 24. Examples of issues identified by participants when interacting with the prototype. The left screenshot shows interaction

during the Exploratory Phase (V1), while the right screenshot displays interaction during the Evaluation Phase (V2).
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